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Abstract

Deep Learning has managed to push boundaries in
a wide variety of tasks. One area of interest is to
tackle problems in reasoning and understanding,
in an aim to emulate human intelligence. In this
work, we describe a deep learning model that ad-
dresses the reasoning task of question-answering
on bar graphs and pie charts. We introduce a novel
architecture that learns to identify various plot el-
ements, quantify the represented values and deter-
mine a relative ordering of these statistical values.
We test our model on the recently released Fig-
ureQA dataset, which provides images and accom-
panying questions, for bar graphs and pie charts,
augmented with rich annotations. Our approach
outperforms the state-of-the-art Relation Networks
baseline and traditional CNN-LSTM models when
evaluated on this dataset. Our model also has a con-
siderably faster training time of approximately 2
days on 1 GPU compared to the Relation Networks
baseline which requires around two weeks to train
on 4 GPUs.

1 Introduction
Deep learning has transformed the computer vision and natu-
ral language processing landscapes and has become a ubiq-
uitous tool in their associated applications. The potential
of convolutional neural networks on images was demon-
strated with its success in the ImageNet classification task
[Krizhevsky et al., 2012]. Long-short-term Memory net-
works [Hochreiter and Schmidhuber, 1997] have demon-
strated a capability to tackle complex tasks like sentence sum-
marization [Rush et al., 2015], Machine passage comprehen-
sion [Hermann et al., 2015] and Neural Machine translation
[Bahdanau et al., 2014]. Neural network models are in-fact a
result of preliminary attempts to model the brain and hence a
natural area of interest is to accurately model "reasoning". A
plethora of visual reasoning tasks have been created to bench-
mark these capabilities of neural networks [Lin et al., 2014;
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Johnson et al., 2017]. Visual question answering tasks re-
quire a combination of reasoning, Natural Language Process-
ing and Computer vision techniques. The model must be
capable of obtaining representations of the image and ques-
tion apart from intelligently combining these representations
to generate an answer. This task helps machines gain the abil-
ity to process visual signals and use it to solve multi-modal
problems.

The rudimentary Convolutional neural networks(CNN)
and Long-short term memory networks(LSTM) models were
incapable of handling these datasets. However, reasoning
specific architectures have managed to achieve super-human
scores on these reasoning based tasks [Perez et al., 2017;
Santoro et al., 2017]. One point of note is that these datasets
have predominantly addressed spatial and relational reason-
ing. [Kahou et al., 2017] designed a dataset that uses scien-
tific graphs and figures to test count-based, numeric, spatial
and relational reasoning. Scientific figures are a compact rep-
resentation of statistical information. These figures are gener-
ally line plots, bar graphs and pie charts. They are found not
only in scientific research papers but also in business analysis
reports, consensus reports and various other places wherein
it is possible to supplement textual information with figures.
Therefore, automating the understanding of this visual infor-
mation could be of great utility to human analysts since it al-
lows drawing inferences from various reports and papers. An
architecture addressing this task is hence of great utility and
also bridges the gap towards a universal reasoning module.

We propose a neural network architecture FigureNet, that
incorporates various entities in the plot, to address the reason-
ing task. FigureNet works on the principle of divide and con-
quer. Different modules are used to emulate different logical
components and are put together, ensuring that the model is
end-to-end differentiable. In order to ensure that the function-
ality of the modules are made clear, we employ supervised-
pretraining on each of the modules on relevant individual sub-
tasks.

In this work, we tackle a subset of the FigureQA dataset
that comprises of bar graphs and pie charts. We compare
our model against the Relation network architecture [Santoro
et al., 2017] and a standard CNN-LSTM architecture. Our
model outperforms these baselines with a computation time
that is 20 times lesser than that of Relation networks .The rest
of the paper is structured as follows. Section 2 gives the re-
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lated work for this paper. Section 3 describes the FigureQA
dataset and the baselines that have been reported in [Kahou
et al., 2017]. In Section 4, we lay out our approach for ques-
tion answering on bar graphs and pie charts. In Section 5, we
explain our training process and show the improvements over
various baselines on the FigureQA dataset. Section 6 gives a
methodology for extending our approach to real-life figures.
Finally, Section 7 concludes the paper and gives directions
for future work.

2 Related work
There are a variety of visual question-answering datasets [Lin
et al., 2014; Johnson et al., 2017]. These datasets however
have questions which solely deal with the positional relation-
ship between objects. Hence, the key function of the neural
network is to identify the different objects and codify their
positions.

The baselines for this task involve naively combining the
LSTM and CNN architectures. [Ren et al., 2015] describe
an end-to-end differentiable architecture which sets the bar
for neural networks on spatial reasoning tasks. [Malinowski
et al., 2017] report results on a varied set of combinations
of textual model embeddings and image embeddings. These
baselines were consequently superceded by attention based
models which use the image embeddings to generate attention
maps over the text [Nam et al., 2016]. Parallel to the develop-
ment of attention based architectures, several pieces of work
in literature explored different fusion functions that com-
bine image and sentence representations [Ben-younes et al.,
2017]. A large body of work also addresses Visual question-
answering problem using modular networks where different
modules are used to replicate different logical components
[Andreas et al., 2016; Hu et al., 2017]. The state of the art
models in visual question answering use a rather simple, end-
to-end differentiable model and achieve super-human per-
formance on relational reasoning tasks [Perez et al., 2017;
Santoro et al., 2017].

There is a plethora of literature on the advantages of pre-
training in deep learning. [Erhan et al., 2009] discusses the
difficulty of training deep architectures and the effect of unsu-
pervised pre-training. They infer that starting the supervised
optimization from pre-trained weights rather than from ran-
dom initialized weights consistently yields better performing
classifiers. [Erhan et al., 2010] suggest that unsupervised pre-
training acts as a regularizer and guides the learning towards
basins of attraction of minima that support better generaliza-
tion from the training data set. We employ supervised pre-
training in this work since FigureQA dataset has the advan-
tage of having extensive annotations. These annotations can
be used to formulate supervised subtasks that can simplify the
principal task of answering the questions.

The disadvantage of Relation Networks, FiLM [Perez et
al., 2017] is the computational demand of these models. Our
architecture is computationally lightweight in comparison. A
key requirement for our neural network model is to identify
colours. Traditional convolutional layers typically mix the
information content present in various channels. Inspired by
the depth-wise separate convolution operation present in the

Xception model [Chollet, 2016], we adopt a similar family of
convolution models in our design.

3 Preliminaries
In this section, we first describe the FigureQA dataset which
was introduced by [Kahou et al., 2017]. This is followed by a
description of the Relation Networks baseline for this dataset.

3.1 The FigureQA Dataset
FigureQA [Kahou et al., 2017] is a visual reasoning corpus
which contains over a million question-answer pairs which
are grounded in scientific style figures like line plots, dot-
line plots, horizontal and vertical bar graphs, and pie charts.
In our work, we consider only bar graphs and pie charts.
The training set contains 1.3 million questions grounded in
100,000 images. The test and validation sets each contain
over 250,000 questions derived from 20,000 images. Fig-
ureQA is a synthetic corpus that has been designed to focus
specifically on reasoning. It follows the general Visual Ques-
tion answering setup, but also provides annotated data with
bounding boxes for each figure.

100 unique colours covering the entire spectrum of colours,
were chosen from the X11 named colour set. FigureQA’s
training, validation and test sets are constructed such that all
100 colours are seen during training. The 100 colours are
divided into two disjoint subsets (A,B) of size 50 each. In
the training set, a figure type is coloured by choosing colours
from one, and only one, of the two subsets. For the test and
validation sets, colours are drawn from the alternate subset
for that figure type, i.e if subset A was used for pie charts in
training set, then subset B is used for pie charts in validation
and test sets. This colouring for the validation and test sets is
called the “alternate colouring scheme". Validation and test
sets with the "same colouring scheme" are also provided. Fig-
ure 1 and Figure 3 are examples of different figure types with
question-answer pairs. Figure 2 shows an example for anno-
tations available for each figure. Images taken from [Kahou
et al., 2017].

Fig. 1 – Vertical Bar graph with question-answer pairs

3.2 Relation Networks
Relation networks(RN) were introduced by [Santoro et al.,
2017] as a simple yet powerful neural module for relational
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Fig. 2 – Horizontal Bar graph with annotations

Fig. 3 – Pie chart with question-answer pairs

reasoning. Relation Networks have the ability to compute re-
lations, just as convolutional neural networks have the ability
to generate image feature map and recurrent neural networks
have the ability to capture sequential dependencies. RNs have
been demonstrated to achieve a state-of-the-art, superhuman
performance on a challenging dataset called CLEVR [John-
son et al., 2017]. RN takes the object representation as input
and processes the relations between objects as follows:

RN(O) = fφ

 1

N2

∑
i,j

gθ(oi,., oj,.)


where O ∈ RN×C is the matrix in which the ith row contains
the object representation oi,.. Here, gθ calculates the relations
between a pair of objects and fφ aggregates these relations
and computes the final output of the model. W refers to the
width of the feature map.

For the FigureQA evaluation, the object representations are
obtained from a convolutional neural network. The CNN
output contains 64 feature maps each of size 8 × 8. Each
pixel from this output corresponds to an object oi,.. We have
64(8 × 8) such objects wherein each object has a 64 dimen-
sional representation. The row and column coordinates of the

pixel are appended to the corresponding object’s representa-
tion so as to include the information about location of objects
inside the feature map.

oi =

(
oi,1, · · · , oi,64,

⌊
i− 1

W

⌋
, (i− 1) mod W

)
The input to the relation network is the set of all pairs of ob-
ject representations, which are concatenated with the question
encoding. The question encoding is obtained from an LSTM
which has a hidden unit size of 256 in the RN baseline. gθ
processes each of the object pairs separately to produce a rep-
resentation for the relations between the objects. These rela-
tion representations are then summed up and given as input
to fφ, which gives the final output. For training the model,
four parallel workers were used. The average of the gradients
from the workers was used to update the parameters.

4 FigureNet
In this section, we describe the FigureNet architecture that
tackles the question-answering task on bar plots and pie
charts. These plots have bars or sectors present in them,
which we refer to as plot elements. In these figure types, the
plot elements are generally distinguished by their respective
colours. Thus, we can recognize a plot element by identifying
the colour in which it is drawn. For example, in Figure 1, we
can see that the five vertical bars are drawn in five different
colours. Each image represents a sequence of numeric values
and obtaining this sequence allows one to answer any relevant
question. For the FigureQA dataset in particular, the absolute
values are not required and the relative ordering suffices. For
example, in Figure 1, the relative ordering of the five bars
is [1,5,4,3,2]. The lower numbers represent lower numerical
values for plot elements and this representation allows ques-
tions involving maximum, greater than, high median etc.. to
be answered easily.

We hypothesize that tackling the larger task of answering
the questions can be solved by handling the subtasks of iden-
tifying plot elements followed by arriving at a relative order-
ing of plot elements. We employ supervised pre-training for
each of the subtasks, using the annotations provided in Fig-
ureQA dataset. The model is comprised of modules which
are logically intended to tackle one specific subtask each.

4.1 Spectral Segregator Module
The purpose of this module is to identify all plot elements and
the colour of each of these elements. For vertical bar graphs,
the model identifies the plot elements from left to right, for
horizontal bar graphs, from bottom to top and for pie charts,
in an anti-clockwise direction(starting from 0 degrees). The
pre-training targets enforce the identification order for the re-
spective plots. The module takes the figure as input and out-
puts the probabilities of colours for each of the plot elements.
By taking advantage of the fact that the number of plot ele-
ments in bar graphs and pie charts of FigureQA is always less
than 11, the module has 11 output units where each output
unit is a probability distribution over the 100 colours. For ex-
ample, in Figure 1, the targets for the module would be [Royal
Blue, Aqua, Midnight Blue, Purple, Tomato, STOP, STOP,



Fig. 4 – Architecture of Spectral Segregator Module - The left image helps one visualize the sequence of convolution operations
and the image on the right is a representation of the utilized LSTM architecture.

STOP, STOP, STOP, STOP] where STOP represents that there
are no more plot elements present and Royal Blue represents a
one-hot vector(probability distribution with a unit probability
for the colour Royal Blue).

Traditional convolution layers do not suffice since they
tend to aggregate the information and give an activation map
that is a coarse representation of the image. Another peculiar-
ity of the convolution operation is that the information across
channels are summed over. Ideally, the channel information is
required to be separated. Hence we solely use 1× 1 convolu-
tions followed by scaling layers and depthwise convolutions.

The input to this module is an image with dimensions
128 × 128 × 3. The first convolutional layer filters the input
image with 64 kernels of size 3×3×3. This is followed by a
max-pooling layer that lowers the 2D feature map dimensions
to 64 × 64. The second, third and fourth convolution layers
apply 1×1 convolutions with number of filters for each layer
being 64, 128 and 256 respectively. The output feature map
is of dimensions 64× 64× 256. This is followed by a scaling
layer that performs channel-wise multiplication of each of the
256 channels. In other words, each channel c is multiplied by
a scalar parameter pc. This operation will not change the di-
mensions of the feature map. The idea behind adding the 1×1
convolution layers and scaling layer is that different colours
have different channel values and these operations will help
differentiate between the colours.

In the next layer, we perform depthwise convolutions with
30 kernels of size 64 × 64 each. Since there are 256 chan-
nels in the feature map, each kernel will produce a 256 di-
mensional vector, thereby giving an output with dimensions
30 × 256. We add two fully connected layers on top of this,
with 1048 and 512 hidden units respectively to finally output
a 512 dimensional image representation. The motivation be-
hind adding the depthwise convolutions is that each 64 × 64
filter can be understood to aggregate the count of a particular
colour, thereby quantifying the values represented by various
coloured plot elements.

Finally, to output the colour probabilities for each plot el-
ement, we use a modified version of a two layered LSTM
network. The architecture for this can be seen in Figure 4.
The 512 dimensional image representation is the initial state
that is input to the LSTM. The output at every time-step is
a probability distribution over the 100 colours and STOP la-
bel. Output at time step t gives the probability of colours for
the tth plot element. In order to mitigate the differences be-

tween the training and testing phases, the output probabilities
at time step t− 1 are given as input to the LSTM at time step
t. This is different from a traditional LSTM in which the out-
put is sampled from the probabilities at time step t − 1 and
then given as input at time step t, i.e we do away with the
sampling. This also allows propagating gradients from input
at time step t to the output of time-step t − 1. The input at
time step 1 is a 101 dimensional parameter that is learned by
the network. The motivation behind using an LSTM mainly
comes from the fact that the number of plot elements in a fig-
ure is not fixed and we found that using an LSTM performs
better than predicting the 11 outputs at one go. If h1

t−1, s
1
t−1

and h2
t−1, s

2
t−1 are hidden states at time step t-1 for first layer

and second layer respectively, the equations for finding the
output probabilities at time step t are given below:

h1
t , s

1
t = LSTM1(ot−1, h

1
t−1, s

1
t−1)

h2
t , s

2
t = LSTM2([h

1
t , s

1
t ], h

2
t−1, s

2
t−1)

ot = softmax(ReLU(WTh2
t + b))

4.2 Order Extraction Module
This module identifies and quantifies the statistical values of
each plot element, followed by sorting these values into a lin-
ear order. Since, the number of plot elements in bar graphs
and pie charts of FigureQA is always less than 11, the pos-
sible positions in the sorted order are [1,2,3,4,5,6,7,8,9,10],
where lower numbers represent lower statistical values, with
0 being reserved as order for plot elements that are absent.
For example, in Figure 1, the targets for the Order Extraction
module would be one-hot values of [1,5,4,3,2,0,0,0,0,0,0](i.e
each element is one-hot vector). The module takes the im-
age as input and gives the probabilities for the position in
the sorted order of each of the plot element as output. We ob-
served that the final feed-forward network learns to ignore the
output probabilities for the plot elements which are absent.

The architecture for this module is almost the same as that
of the Spectral Segregator module except that it has three
fully connected layers with 2048, 1024, 512 hidden units re-
spectively, after the depthwise convolutions. The output of
two layered LSTM network at each time step is a probability
distribution over the 11 possible relative ordering values(0 to
10). The additional parameters are required to perform the
heavy lifting of the sorting operation.



Fig. 5 – Architecture of final feedforward network

4.3 Final Feed-forward network
We concatenate the output probabilities from the 11 timesteps
in the Spectral Segregation and Order Extraction modules.
Thus, we get a 11 × 101 + 11 × 11 = 1232 dimensional
figure representation. We consider the output probabilities
instead of sampling the outputs so that we can backpropagate
the gradients through these modules when the entire network
is trained end-to-end. The question representation consists of
two parts, question encoding and question-colour encoding.
The question encoding is produced by passing the question,
through an LSTM with 256 hidden units. The question is
passed to LSTM as a sequence of words(each represented as
a one-hot vector). The question-colour encoding is obtained
by concatenating the 100 dimensional one-hot vector of first
colour in question with the 101 dimensional(100 colours +
one label for no second colour) one-hot vector of second
colour in question. The question encoding and question-
colour encoding together form the question representation.
The figure representation is concatenated with question repre-
sentation and given as input to feed-forward neural network.

The feed-forward network has four hidden layers and one
output layer. The hidden layers have 1024, 512, 256 and 256
hidden units respectively and the output layer has only 1 unit.
The activations are ReLU for the hidden layer and sigmoid
for the output layer. The architecture is shown in the Figure
5.

5 Experiments
The training set contains 60,000 images with 20,000 each for
vertical bar graphs, horizontal bar graphs and pie charts. The
validation set in FigureQA contains 12,000 images. Since
the test set for FigureQA is unreleased till date, we split the
validation set(with same colour scheme as training) into 4500
images(1500 vertical bars + 1500 horizontal bars + 1500 pie
charts), to be used for validation and remaining 7500 images
will be used for testing. For the supervised pre-training task,
the targets for the modules are generated from the annotations
for each image provided in the FigureQA dataset.

5.1 Training Specifics
For pre-training the modules, a cross entropy loss between the
softmax output probabilities at each time step and the one-hot
targets generated from the annotations, are utilized. For the
question answering task, a sigmoid cross entropy loss func-
tion on the output unit of feed-forward network is made use
of.

The first step involves carrying out the supervised pre-
training of the Spectral Segregator and Order Extraction mod-
ules. The learning rate is 0.00025 and we train each of the
modules for 70 epochs. Consequently, the parameters of
the modules are fixed and the final feed-forward network is
trained on the question answering task for 50 epochs with a
learning rate of 0.00025. Finally, the learning rate is lowered
to 0.000025 and the entire architecture is trained(along with
the modules) end-to-end for 50 epochs.

5.2 Results
Table 1 compares the performances of CNN + LSTM, Rela-
tion Networks, FigureNet and a human baseline. These num-
bers are obtained on a subset of the test set(as reported by
[Kahou et al., 2017]). The CNN + LSTM baseline is a sim-
ple architecture that concatenates the representation of an im-
age after passing it through a CNN with the representation of
the text after passing it through an LSTM. This concatenated
representation is passed through feed-forward layers to obtain
the answer. The RN baseline is identical to that described in
Section 3.2.

Model Accuracy
CNN + LSTM 59.94
RN(Baseline) 77.33

Our Model 83.95
Human 93.29

Table 1 – Accuracy

It can be seen that our model outperforms the baselines on
all three figure types(see Table 2). We find that our model
performs particularly well on pie charts and the performance
on this figure type is closest to human performance.

Figure Type CNN + LSTM RN(Baseline) Our Model Human
Vertical Bar 60.84 77.53 87.36 95.90

Horizontal Bar 61.06 75.76 81.57 96.03
Pie Chart 57.91 78.71 83.13 88.26

Table 2 – Accuracy per figure type

We observed that model performance is close to human
performance for questions on maximum, minimum and com-
parison of plot elements. From Table 3, one observes that the
model struggles with questions on the low median and high
median which is also the case for humans.



Template CNN + LSTM RN(Baseline) Our Model Human
Is X the minimum? 60.12 75.55 89.31 97.06
Is X the maximum? 64.70 89.29 89.88 97.18

Is X the low median? 54.87 68.94 73.58 86.39
Is X the high median? 55.83 69.37 73.17 86.91

Is X less than Y? 62.31 80.63 89.30 96.15
Is X greater than Y? 62.07 80.85 89.20 96.15

Table 3 – Accuracy per question type

5.3 Ablation Studies
We perform an ablative analysis to highlight the essentiality
of different components of the model.

Effect of modification to LSTM
In the two layered LSTMs present in each of the modules, the
output probabilities at time step t − 1 are given as input to
time step t. This is a modification to the standard approach
where the output is sampled from the output probabilities at
time step t−1, and the sampled one-hot vector is fed as input
at time step t. The disadvantage with the standard approach
is the discrepancy during the training and testing phases. In-
stead, we directly feed the output probabilities of the previ-
ous time step as input to current time step. An improvement
in performance is seen when the sampling step is avoided(see
Table 4).

Model Accuracy
Our Model 83.95

Model with normal LSTM 81.61

Table 4 – Comparing LSTM training methods

Importance of question colour encoding
We perform another ablation study in which we train a model
without the question colour encoding as input to the final
feed-forward network. The training process is the same as
given in Section 5.1 except that the final end-to-end training
is done for 100 epochs. We show that the model is robust
enough to learn mappings between one-hot values of colours
and colour names in question, when these one-hot values of
question colour names are not given as input. We observe a
drop in performance of only 1.33% as indicated in Table 5.

Model Accuracy
Our Model 83.95

Model without question colour input 82.62

Table 5 – Effect of additional colour input encoding

Effect of using two layered LSTM
Finally, we investigate the effect of using a two layered
LSTM. We train another model that uses a single layer
LSTM. We observe a huge drop in accuracy as shown in Ta-
ble 6, which signifies the greater representational capacity of
a two layered LSTM. The drop in performance of the Order
Extraction module was much higher than that of the Spec-
tral Segregator module, thereby emphasizing that the second
layer of the LSTM is essential for the sorting sub-task.

Model Accuracy
Our Model 83.95

Model with 1 layer LSTM 75.29

Table 6 – Comparing performances of different LSTM layer
sizes

6 Extending to beyond Synthetic Figures
Real life scientific figures need not have a mapping between
the plot element colour and name, since the plot elements can
be indistinguishably coloured for each figure. Hence, there is
a need to identify the plot element names from the axis/legend
in the figure. Here, we give an approach for extending the
current modules to real life figures:

1. The bounding box annotations, as shown in Figure 2, can
be used to train a detection model. This model detects
the bounding boxes around the plot element names on
the axis or legend.

2. Optical Character Recognition(OCR) can be used to
get the plot element names from the detected bounding
boxes. The detection model + OCR replaces the Spectral
Segregator module that we used earlier.

3. The Order Extraction module can be used as is, to obtain
the relative ordering of plot elements.

4. The figure representation is formed by concatenating the
word embeddings of plot element names obtained, with
the outputs from Order Extraction module.

5. This figure representation, combined with the question
encoding, can be used for the final question answering
task on realistic scientific plots/figures.

7 Conclusion and Future Work
In this work, we proposed a novel architecture for question
answering on bar graphs and pie charts. The model aims
to tackle visual and numeric reasoning with modular com-
ponents. We formulated supervised pre-training tasks to train
simpler modules and then combined these modules to solve
the question answering task. We ensure that each of the mod-
ules is differentiable so that once we incorporate the pre-
trained modules into our network, the entire architecture can
be trained end-to-end.

Our model performs significantly better than the state-
of-the-art Relation Networks baseline and the CNN+LSTM
baseline. We show improvements in accuracy for each fig-
ure type and question type bridging the gap towards human-
level performance. We also obtain significant improvements
in training time as our model takes 2 days to train on 1 GPU
compared to RNs which required around 2 weeks on 4 GPUs.

In future work, we intend to extend the approach for ques-
tion answering on line plots and improve the performance on
low-median and high-median questions. Another more ambi-
tious extension is to tackle a more varied variety of question-
answering tasks on real life scientific figures. Another line of
work includes making the current model colour agnostic in
order to test the model on unseen plot colour combinations.
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