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1 INTRODUCTION:
This report presents the study of some theorems and problems based on some concepts of Number
Theory.

2 Theorem 1 - Fermat’s Little Theorem

2.1 Proof By Induction

For any integer a, and a prime number, p:

ap ≡ a (mod p)

2.1.1 Proof:

1p ≡ 1 (mod p)

Let
np ≡ n (mod p)

To prove,
(n+ 1)p ≡ (n+ 1) (mod p)

1 +

(
p
1

)
n+ ....

(
p

p− 1

)
np−1 +

(
p
p

)
np − n− 1 ≡ 0 (mod p)

since

(
p
p

)
= 1and np ≡ n (mod p) and p|

(
p
r

)
∀ r 6= 0, p, because

p|p(p− 1)...(p− r + 1) and p - r!.

2.1.2 Pseudoprimes:

x|
(
x
r

)
∀ r 6= 0, x, when x is not prime.

2.2 Another form:

ap−1 ≡ 1 (mod p) p is prime and p - a.
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3 Theorem 2- Wilson’s Theorem
(p− 1)! ≡ −1 (mod p), when p is prime.

3.1 Proof

(p− 1)! ≡ (p− 1) (mod p)
1.2.3...(p− 1) ≡ (p− 1) (mod p)
This is because for every a ε [2, p− 2], there exists a b s.t. ab ≡ 1 (mod p).
ab− 1 = pk
ab− pk = 1.This is true since (a, p) = 1, since p is a prime.
Also, b 6= a, since if b = a, a2 ≡ 1 (mod p), a2− 1 ≡ 0 (mod p), (a− 1)(a+1) ≡ 0 (mod p), a=1 or a=p-1
Thus, the numbers a ∈ [2, p− 2], can be paired.

4 Theorem 3 - Chinese Remainder Theorem

4.1 Theorem:

Let m1,m2...mr exists s.t. (mi,mj) = 1 ∀ i 6= j, then there exists a unique x s.t.

x ≡ c1 (modm1)

x ≡ c2 (modm2)

...

x ≡ cr (modmr)

4.2 Proof:

4.2.1 For two modulo equations:

Let there exist x s.t. x ≡ c1 (modm1) and x ≡ c2 (modm2).
This implies x = c1 + k1m1 = c2 + k2m2.

k1m1 − k2m2 = c1 − c2.
Such a pair of (k1, k2) exists because (m1,m2) = 1.

4.2.2 Multiple Modulo Equations:

x = c1 + k1m1 = c2 + k2m2 = ...cr + krmr.
(mi,mj) = 1 implies ∃ (ki, kj) s.t. ci + kimi = cj + kjmj ∀ i 6= j.

4.3 Algorithm to find x

4.3.1 For two modulo equations:

Let,
x ≡ c1 (modm1)

x ≡ c2 (modm2)

(m1,m2) = 1 implies ∃ (m′
1,m

′
2) s.t.

m1m
′

1 ≡ 1 (modm2)

m2m
′

2 ≡ 1 (modm1)

Then,

x = c2m1m
′

1 + c1m2m
′

2
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4.3.2 Multiple Modulo Equations:

Let,
x ≡ c1 (modm1)

x ≡ c2 (modm2)

...

x ≡ cr (modmr)

(mi,
∏

jmj) = 1

Let,
∏

imi = ni. This implies, (mi, ni) = 1, =⇒ ∃n′
1 s.t. n1n

′
1 ≡ 1 (modm1) ∀ i ∈ [1, r].

Thus,

x =
r∑
i=1

cinin
′

i

5 Fundamental Divisibility Axioms:
a|b =⇒ a|bc∀ cεZ

a|b and b|c =⇒ a|c

a|b and a|c =⇒ a|(bx+ cy)

a|b and b|a =⇒ a = ±b

a > 0, b > 0 =⇒ a ≤ b

m 6= 0, a|b =⇒ ma|mb

6 Division Algorithm:
b = aq + r 0 ≤ r < a

6.1 Proof:

Let us consider,

...b− 2a, b− a, b, b+ a, b+ 2a...

r is the smallest number in the above series as it satisfies the equality and the inequality in the
theorem statement.
To prove uniqueness,

Let q1, r1 exist s.t. they satisfy the constraints of the theorem.
We prove that r1 = r by contradiction.
Let r1 6= r, then r1 > r since r is the smallest number which satisfies the given constraints.
Also, 0 < r1 − r < a, as r < a, r1 < a.
r1 − r = a(q − q1), =⇒ a ≤ (r1 − r). This is a contradiction.

7 Problems:

7.1 Problem 1:

If g = (b, c)∃x0, y0 s.t. q = bx0 + cy0.
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7.2 Answer:

Let l be the least number s.t. l = bx+ cy. Let’s assume l - b. l = bq + r, 0 < r < b. =⇒ r = bq − l.
=⇒ r = bq − bx− cy =⇒ r = b(q − x)− cy. But r < l. This is a contradiction.
∴ l|b and l|c.

To prove l is the g.c.d.,
b = gB and c = gC =⇒ l = gBx+ gCy
∴ g|l =⇒ g ≤ l
g < l is impossible, ∵ gis the greatest common divider.
∴ g = l.
Basically all factors must be there.

7.3 Definition:

7.3.1 Fermat’s numbers:

22
n
+ 1.

If 2k + 1 is prime, k = 2n.
∵ (x+ 1)|(xk + 1) if k is odd.

But not all Fermat’s number are prime, since the converse may not be true.

7.4 Problem 2:

(n− 1)2|(nk − 1) iff (n− 1)|k.

7.4.1 Solution:

nk − 1 = (((n− 1) + 1)k − 1) = (n− 1)k +

(
k
1

)
(n− 1)k−1 + ....

(
k

k − 2

)
(n− 1)2 + k(n− 1).

Only the last term doesn’t have (n− 1)2.

7.5 Problem 3:

∃ x s.t. ax ≡ 1(modm) iff (a,m) = 1.

7.5.1 Solution:

ax− 1 = km

ax− km = 1 iff (a,m) = 1

8 Euler’s Theorem:
aφ(m) ≡ 1(modm) if (a,m) = 1.

φ(m) is the reduced residue class of m.

8.1 Complete Residue Class:

All modulo classes s.t. every natural number falls into one of them, i.e. all possible remainders or
equivalents.

8.2 Reduced Residue Class:

No.s a1, a2...aφ(m) s.t. ai 6≡ aj∀i 6= j and (ai,m) = 1∀i.
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8.3 Proof:

Let r1, r2...rφ(m) be a reduced residue class of m.
Then even ar1, ar2...arφ(m) is a also a reduced residue class of m, if (a,m) = 1., with a one-one direct
mapping.∏φ(m)

i=1 ari ≡
∏φ(m)

i=1 ri (modm)
aφ(m) ≡ 1(modm)

Fermat’s theorem is a corollary of Euler’s theorem.

9 CONCLUSION:
Number theory theorems for finding solutions to congruences have been studied and some problems
have been solved based on them. This reading assignment involved studying theorems such as Fermat’s
theorem, Wilson’s theorem, Euler’s theorem, Chinese Remainder Theorem, Euclidean Algorithm and
other divisibility theorems. The book that has been used for reference and problem solving during the
course of this reading assignment is An Introduction to the Theory of Numbers - Niven, Zuckerman
and Montgomery.
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