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Time Series Modeling [11]: 
Set of data points which possess uncertainty and a sequential nature 

 

Features of McFIS-MN to model time series : 
 
 Meta-Cognition (Mc) 

To control the learning process; 

by deciding what-to-learn, when-to-learn and how-to-learn  

 

 Fuzzy Inference System (FIS) 

To handle uncertainty 

 

 Memory Neurons (MN) 

To handle system dynamics by introducing recurrence 

 

 Projection-Based Learning (PBL) 

To ensure a fast one shot learning 

 

 

Background and Motivation 

1 [11] Box Jenkins Book (2015) 
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Fuzzy Inference Systems (FIS): 
 

1. Fixed Structure FIS [1]: 
• Handles uncertainty well with human-like linguistic behavior  
• Not efficient in handling non-stationary data 
• Not efficient in handling sequential data 

 
2.   Self-Adaptive FIS [2-4]: 

• Handles uncertainty well with human-like linguistic behavior  
• Capable of handling non-stationarity using Meta-cognitive evolving stucture 
• Not efficient in handling sequential stream of data with BP 

 
 
 
 

 

 

 

Literature Review 

2 [1] Takagai and Sugeno  (1993))   [2] SAFIS (2006)   [3] McFIS (2012)   [4]  PANFIS (2014)  [5] BPTT Proceedings of the IEEE  (1990)  [6]  S. Suresh et. al. (2013) 

Learning Methods: 
 

1. Backpropagation (BP) Through Time [5]: 
• Slower, needs multiple epochs  hence not suitable for sequential learning 

2. Projection-Based Learning [6]: 
• Faster one-shot learning method suitable for sequential learning 

 
 



Recurrent Structures: 
 

1. Regular Feedback Structures [7]: 
• Can handle sequential behavior 
• Can’t handle unobservable dynamic systems 
• System order needs to be known 
• Stability can be a critical issue 

 
 
 

1. Memory Neuron Network [8]: 
• Can handle system dynamics well 
• System order doesn’t need to be known 
• Stability isn’t an issue 

 
 
 

 

 

 

Literature Review 

 [7] Levin et al.(1996) IEEE TNN   [8] P. S. Sastry et al. (1994) IEEE Transaction on Neural Networks 

Memory Neuron 
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Proposed McRFIS-MN structure  

4 

Memory 

Neuron 

Regular Node 
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Meta-cognitive Structure Learning 

5 

The prediction error - e(k) is used to decide one among the following strategies for handling 

the k^th training sample  

 

1. Sample deletion:  

 

2. Sample Learning: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Sample Reserve: If none of the above conditions are satisfied, sample is deferred for 

learning at a later stage 

 

 

Rule Addition 

• If error is higher than Add Threshold 

•  Spherical Potential is lower than a 
threshold. 

 

 

•  A lower potential indicates higher 
novelty hence add a new rule 

• If not novel go for weight update 

Weight 
Update 

• When the 
sample isn’t 
very novel, 

•  weights are 
tuned using 
PBL 

• Discussed in 
next slide  

Rule  

Pruning 

• If the 
contribution of a 
rule is low for 
more than a 
certain number 
of samples the 
rule is pruned. 

• Ensures a 
compact network 
size 
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Projection-Based Parameter Learning  

6 

 Cost function =  Sum of squared error for all the training samples 

 

 

 

 Goal is to minimize the cost function, 

 

 

 

 Equating the partial derivative of J(w) with respect to w to 0 and rearranging 

we have, 

 

 

 Solution provides the optimal weights as, 

 

 

 

Where,  
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• Standard nonlinear dynamic system identification problems 
▪ Nonlinear dynamic SID problem 1 [2,9] 
 

 

 

 

• Benchmark time series forecasting problems 
▪ Mackey Glass chaotic time series problem [10] 

▪ Box Jenkins CO2 emission prediction problem [11] 

▪ Sunspot number prediction problem [11] 
 

 

 

 
 

 

Experimental Results 

7 [9]  Narendra et al. (1990) IEEE TNN  [2] H.J.Rong et al. (2006) Elsevier  [10] R.S.Crowder(1991) Elsevier [11] Box Jenkins Book (2015) 

Synthetic, nonlinear, dynamic 

Nonlinear, dynamic with uncertainty 



Nonlinear dynamic system identification problems 

Experimental Results 

• 900 samples for training, 1000 samples for testing 

8 

Performance 

Comparison 

Actual vs Estimated Plot 



Experimental Results 

  Mackey Glass chaotic time series problem  

10 

• 3000 samples for training, 500 for testing 

Performance 

Comparison 

Actual vs Estimated Plot 



Experimental Results 
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  Box Jenkins and Sunspot time series problem  

Performance Comparison 



Outline 

• Background and Motivation 

• Literature Review 

• Methodology 

▪ Proposed McRFIS-MN structure 

▪ Meta-cognitive Structure Learning  

▪ Projection-Based Parameter Learning 

• Experimental Results 

• Conclusion and Future Directions 

 

19 



Novelty and advantages of McRFIS-MN at a glance 
 

• The use of Memory Neurons throughout the network at a cellular level 
helps in capturing the input-output dynamical relationship closely 

 

• The projection-based one-shot learning is fast and accurate 

 

• Meta-cognitive structure learning is highly effective 
 

 

Future directions of Research 

 

• Incorporation of type 2 fuzzy inference into McRFIS-MN for better 
handling of uncertainty in real world time series problems. 

• Application of McFIS-MN in classification problems 

 

 

Conclusion 
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