

A Meta-cognitive Recurrent Fuzzy Inference System with Memory Neurons (McRFIS-MN) and its Fast Learning Algorithm for Time Series Forecasting

2018 Symposium Series on Computational Intelligence IEEE SSCI

Subhrajit Samanta (PhD student, IGS NTU) Shubhangi Ghosh (B.Tech student, IIT Madras) Suresh Sundaram (Professor, IISC Bengaluru)

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Background and Motivation

Time Series Modeling [11]:

Set of data points which possess uncertainty and a sequential nature

Features of McFIS-MN to model time series :

- Meta-Cognition (Mc) To control the learning process; by deciding what-to-learn, when-to-learn and how-to-learn
- Fuzzy Inference System (FIS) To handle uncertainty
- Memory Neurons (MN) To handle system dynamics by introducing recurrence
- Projection-Based Learning (PBL)
 To ensure a fast one shot learning

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Literature Review

Fuzzy Inference Systems (FIS):

- 1. Fixed Structure FIS [1]:
 - Handles uncertainty well with human-like linguistic behavior
 - Not efficient in handling non-stationary data
 - Not efficient in handling sequential data
- 2. Self-Adaptive FIS [2-4]:
 - Handles uncertainty well with human-like linguistic behavior
 - Capable of handling non-stationarity using Meta-cognitive evolving stucture
 - Not efficient in handling sequential stream of data with BP

Learning Methods:

- 1. Backpropagation (BP) Through Time [5]:
 - Slower, needs multiple epochs hence not suitable for sequential learning
- 2. Projection-Based Learning [6]:
 - Faster one-shot learning method suitable for sequential learning

Literature Review

Recurrent Structures:

- 1. Regular Feedback Structures [7]:
 - Can handle sequential behavior
 - Can't handle unobservable dynamic systems
 - System order needs to be known
 - Stability can be a critical issue

- 1. Memory Neuron Network [8]:
 - Can handle system dynamics well
 - System order doesn't need to be known

Memory Neuron

• Stability isn't an issue

[7] Levin et al.(1996) IEEE TNN [8] P. S. Sastry et al. (1994) IEEE Transaction on Neural Networks

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Proposed McRFIS-MN structure

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Meta-cognitive Structure Learning

The prediction error - e(k) is used to decide one among the following <u>strategies</u> for handling the kth training sample

- 1. <u>Sample deletion</u>: If $|e(k)| < E_d$ then delete k^{th} sample
- 2. <u>Sample Learning:</u>

 $|e(k)| > E_d$

3. <u>Sample Reserve:</u> If none of the above conditions are satisfied, sample is deferred for learning at a later stage

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Cost function = Sum of squared error for all the training samples

$$J(\mathbf{w}) = \frac{1}{2} \Sigma_{k=1}^{S} e^2(k)$$

Goal is to minimize the cost function,

$$\mathbf{w}^{\star} = argminJ(\mathbf{w})$$

Equating the partial derivative of J(w) with respect to w to 0 and rearranging we have, $A\mathbf{w} = B$

Solution provides the optimal weights as,

$$\mathbf{w}^{\star} = A^{-1}.B$$

$$a_{rr^*} = \sum_{k=1}^{S} \hat{F}_r(k) \cdot \hat{F}_{r^*}(k)$$
$$b_r = \sum_{k=1}^{S} \hat{F}_r(k) \cdot y(k), \quad r, r^* = 1, 2, \cdots, 2R$$

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

• Standard nonlinear dynamic system identification problems

Nonlinear dynamic SID problem 1 [2,9]

Synthetic, nonlinear, dynamic

- Benchmark time series forecasting problems
 - Mackey Glass chaotic time series problem [10]
 - Box Jenkins CO2 emission prediction problem [11]
 - Sunspot number prediction problem [11]

Nonlinear, dynamic with uncertainty

Experimental Results

Nonlinear dynamic system identification problems

• 900 samples for training, 1000 samples for testing

Comparison								
Problem	Network	#Rules	Testing RMSE	CPU time(s)				
SID1	eTS	49	0.021	3				
	SimpleTS	22	0.030	5				
	SAFIS	17	0.022	4				
	McFIS	10	0.030	7				
	McRFIS-MN	14	0.040	0.46				

Performance

Actual vs Estimated Plot

Experimental Results

Mackey Glass chaotic time series problem

• 3000 samples for training, 500 for testing

1.00 Actual Estimated 0.75 0.50 0.25 Values 0.00 -0.25 -0.50 -0.75 -1.00100 200 300 400 500 0 Time steps

Actual vs Estimated Plot

Problem	Network	#Rules	Test NDEI	CPU time(S)
MG	eTS	9	0.380	0.3
	SAFIS	6	0.376	0.5
	SimpleTS	11	0.394	0.4
	McFIS	10	0.100	0.9
	McRFIS-MN	14	0.110	0.3

Performance

Comparison

Box Jenkins and Sunspot time series problem

Performance Comparison

Problem	Network	#Rules	Test RMSE	CPU time(S)
BJ	eTS	9	0.049	0.4
	SAFIS	5	0.071	0.6
	SimpleTS	5	0.049	3
	McFIS	12	0.036	0.2
	McRFIS-MN	5	0.033	0.04
Sunspot			Test RMSE	
	eTS	23	0.047	3.5
	SAFIS	21	0.100	4.4
	SimpleTS	20	0.050	3.2
	McFIS	12	0.060	4.2
	McRFIS-MN	5	0.044	0.15

- Background and Motivation
- Literature Review
- Methodology
 - Proposed McRFIS-MN structure
 - Meta-cognitive Structure Learning
 - Projection-Based Parameter Learning
- Experimental Results
- Conclusion and Future Directions

Novelty and advantages of McRFIS-MN at a glance

- The use of <u>Memory Neurons</u> throughout the network at a cellular level helps in capturing the <u>input-output dynamical relationship</u> closely
- The projection-based one-shot learning is fast and accurate
- Meta-cognitive structure learning is highly effective

Future directions of Research

- Incorporation of <u>type 2 fuzzy inference</u> into McRFIS-MN for better handling of uncertainty in real world time series problems.
- Application of McFIS-MN in **classification problems**

[1] T Takagi, M Sugeno, "Fuzzy identification of systems and its applications to modeling and control", IEEE Cybernatics

[2] H.-J. Rong et al., "Sequential adaptive fuzzy inference system (safis) for nonlinear system identification and prediction", Fuzzy Sets and Systems-Elsevier, 2006

[3] K Subramanian et al., "A metacognitive neuro-fuzzy inference system (McFIS) for sequential classification problems", IEEE TFS, 2013

[4] M Pratama, SG Anavatti, PP Angelov, "PANFIS: A novel incremental learning machine", IEEE TNN, 2014

[5] P. J. Werbos, "Backpropagation through time: what it does and how to do it", Proceedings of the IEEE, 1990

[6] GS Babu, S Suresh ,"Meta-cognitive RBF network and its projection based learning algorithm for classification problems", Applied Soft Computing, 2013 – Elsevier

[7] A. U. Levin et al., "Control of nonlinear dynamical systems using neural networks. ii. observability, identification, and control", IEEE TNN, 1996

[8] P. S. Sastry, G. Santharam et al., "Memory neuron networks for identification and control of dynamical systems", IEEE Trans. Neural Networks ,1994

[9] K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks", IEEE TNN, 1990

[10] R. S. Crowder, "Predicting the Mackey-Glass time series with cascade-correlation learning", Elsevier, 1991

[11] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, "Time series analysis: forecasting and control" John Wiley & Sons, 2015

