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ABSTRACT

Prior approaches to certify neural networks against geometric per-
turbations pass through the neural network, an abstract polyhedron
domain of perturbed images for each image in a given dataset. The
input polyhedra are represented by linear upper and lower constraints
for each individual pixel in an image in terms of the perturbation
parameters, generated by a combination of sampling and optimisa-
tion. Our key idea is to also generate linear constraints bounding
affine combinations of multiple pixels in the image. The multiple-
pixel constraints allow our method to capture more precisely the
complex relationships between the original image, the geometric
transformation parameters and the resulting transformed images.
Our experimental results show the method is signicantly more pre-
cise than prior work. We observe that scalability is maintained with
respect to time for datasets with smaller images (in terms of pixels);
e.g. MNIST; and smaller networks, while our method is slower for
datasets with coplex images; e.g. CIFAR; and larger networks.

1 INTRODUCTION

Neural networks deployed in safety-critical applications are required
to be robust to geometric perturbations. The current state of the
art, DEEPG[1], identifies linear constraints bounding individual
pixels above and below in terms of the geometric parameters. These
constraints are obtained by sampling attacks and optimisation to
find tight, but sound, constraints. DEEPG does not encode the
dependencies between pixels, which causes the method to lose
precision. Through our method, we seek to identify interactions
between pixels with low variability with respect to our perturbation
parameters. An interaction between pixels is formulated as an affine
combination of pixels, such that the linear coefficients of pixels sum
up to one. We choose these interactions through two approaches:

• Difference of neighbouring pixels

• Interpolative Decomposition of the perturbation matrix (Terms
explained later)

Intuitively, we expect the a pixel to have similar intensity as its
neighbouring pixel. Hence, constraints generated from neighbour-
hoods help us gain precision. For our next approach, we consider the
matrix, with its rows being the pixel values for a particular randomly
sampled value of the perturbation parameters. Through a matrix
decomposition technique, namely Interpolative Decomposition [5],
we identify a smaller subset of pixels such that the remaining pixels
can be expressed in terms of the fundamental pixels. For the remain-
ing pixels, we consider the interaction as the difference between the
pixel value and its linear approximation in terms of the fundamental
pixels. We expect the difference to be close to zero. The number of
pixels we choose to be fundamental is a parameter. This enables us

to parameterise a trade-off between precision and runtime. Linear
constraints for the affine interactions between pixels are also found
in a similar fashion as DEEPG, by sampling and optimisation.

Main Contributions Our main contributions are:

• We devised two methods to define interactions between pixels,
namely Neighbourhood constraints and Interpolative decom-
position, which help us gain maximum precision.

• Implemented a complete framework to integrate bounds for
pixel interactions with the DEEPG model. Since backsubsi-
tution of the first layer neurons in terms of the pixels is not
possible as earlier, we calculate the bounds through a linear
program.

• Devised a method to parameterise a trade-off between precision
of certification and runtime.

2 BACKGROUND

Interpolative Decomposition
An interpolative decomposition (ID) of a matrix A ∈Cm×n of rank
k ≤ min{m,n} is a factorization

AΠ = [AΠ1AΠ2] = AΠ1[IT ]

where Π = [Π1,Π2] is a permutation matrix with Π1 ∈ {0,1}n×k,
and AΠ2 = AΠ1T . This can be equivalently written as A = BP,
where B = AΠ1 and P = [I,T ]ΠT , are the skeleton and interpolation
matrices respectively.

If A does not have exact rank k, then there exists an approximation
in the form of an ID such that A = BP+E, where ‖E‖ ∼ σk+1 is
on the order (k+1)-th largest singular value of A. σk+1 is the best
possible error for a rank-k approximation and is achieved by SVD.
But for our application, we need the structure of A to be preserved,
in the sense that we can identify a subset of fundamental columns of
the matrix to be decomposed and express all other columns as linear
combinations of the fundamental columns. This achieved by ID,
and also it is cheaper to construct than SVD.

For our application, the columns of the matrix A represent the
values of a particular pixel for all randomly sampled values of the
perturbations. Thus, by using ID we identify a subset of funda-
mental pixels from an image and express all other pixels as linear
combinations of these fundamental pixels.

3 METHODOLOGY

Motivation As mentioned before, DEEPG[1] does not capture de-
pendencies of multiple pixels in terms of the geometric perturba-
tion parameters. Our key insight is to include affine constraints
over multiple pixels to describe our input polyhedral abstraction of
transformed images. We first propose methods to obtain the affine
expressions of multiple pixels that we want to consider, namely (i)
difference of neighbourhood pixels, and (ii) constraints generated by



Interpolative decomposition over the matrix of transformed images.
Owing to the multiple pixel constraints, the first layer neurons can
no longer be substituted in terms of the input pixels, and thereby
the geometric parameters. To integrate the now more precise input
polyhedron in the certification pipeline, we now have to solve a lin-
ear program, in terms of the first layer neurons, the input pixels and
the geometric parameters, to obtain tighter bounds for each neuron
whose sign cannot be determined by DEEPG alone.

The DEEPG certification is performed by splitting the input
domain of parameters and performing the certification for each
split independently. This allows a gain of precision. We use the
constraints over multiple pixels only to certify input perturbation
splits which cannot be certified by DEEPG, owing to the longer
certification times of our approach. Below, we describe how our
approach extends the DEEPG methodology.

Step 1 We use DEEPG[1] to create single pixel constraints. That
is we randomly pick perturbations in the geometric perturbation
range to be certified and store the resulting images. For each pixel in
the image, locally optimal linear constraints are formed in terms of
the geometric parameters. This is done by solving a linear program
to find weights and biases describing a linear upper and lower
bound having the least volume while encompassing the perturbed
images. The globally optimal constraints, which are sound over
all perturbations in the given range, are found by numerically
splitting the perturbation range iteratively. The functional form of
the pixels is assumed to be Lipschitz continuous over the geometric
parameters and mean value theorem is used to bound the maximum
violation in each split.

Step 2 We try to certify all the splits of the input perturbation
range using DEEPG. The specifications; the linear single pixel con-
straints; of the splits which are not certified by DEEPG are stored
to be further attempted to be certified by the more precision input
polyhedron obtained from our approach.

Step 3 We generate the affine combinations of multiple pixels
that we want to consider through two strategies described below.

• Neighbourhood constraints
We consider the difference of each pixel with its right and
bottom neighbours.

• Interpolative Decomposition [5]
We have already stored the random perturbation in the
input perturbation range for the image under consideration.
Using these, we construct a perturbation matrix, where each
perturbed image is represented as a single column in the
matrix. Let A be the perturbation matrix, with m rows for m
random perturbations, and n columns equal to the number
of pixels in an image. Consider Â = AΠ, where Π is a
permutation matrix denoting a permutation of the columns of
A. Upon applying interpolative decomposition, we get:

Â = Â:,JX ,

where

– J is a subset of r indices from {1,2, ...,n}.
– The m× r matrix A:,J represents the columns in A corre-

sponding to the indices in J.

– X is an r× n, containing an r× r identity sub-matrix.
The remaining n− r columns of X represent the linear
approximation of the n− r pixels in terms of the r pixels.

To construct our affine multiple-pixel expressions, we use the
n− r columns in X representing the n− r pixels in terms of the

r fundamental pixels. For each of the n− r columns, we use
the difference of the pixel referred to and its linear expansion
in terms of the r pixels. For example, for the jth column
outside of the identity submatrix of X , our set of coefficients
would be {−1,X:, j} corresponding to the pixels {x j,x1−r}.
The corresponding indices in the image representation are
also given as out by the algorithm used (Scipy’s Interpolative
Decomposition algorithm).

Step 4 We again generate constraints for the now available
multiple-pixel affine expressions by solving a linear program similar
to DEEPG. The globally optimal constraints are again found numeri-
cally. The global optimisation step for the multiple pixel constraints
is slower because their variability in term of the geometric parame-
ters is designed to be smaller as compared to individual pixels. Thus,
we need more steps to obtain a finer split, which would give the
maximum violation that we are looking for.

Step 5 We run our approach of propagating the more precise
input polyhedron through the neural network only for the chunks
that were not certified by DEEPG. Passing the input polyhedron with
multiple pixel constraints is not straight-forward and cannot be done
in a DeepPoly-like fashion. Now, for each neuron in the network, we
first obtain the upper and lower bounding linear constraints in terms
of the firat layer neurons. The constraints are translated in terms
of the geometric parameters by solving a Linear Program, over the
constrained space described by the input polyhedron.

4 EVALUATION

For our certification method, we consider as explained before, two
methods of defining interactions between pixels: (1) Differences of
neighbouring pixels and (2) Interpolative decomposition [2] of the
attack matrix. We carry out the certification over splits of the input
perturbation domain. We only attempt to certify those splits but
our multiple-pixel approach, which cannot be certified by DEEPG
[1]. We generate linear upper and lower bounding constraints for
individual pixels and if needed, affine interaction between pixels
and propagate the input polyhedron through the network to certify.
Although, our approach is more precise than DEEPG, it is slower
because the bounds of first-layer neurons cannot be backsubstituted
in a Deep-poly-like fashion, and a linear program needs to be solved
to bound the neurons in terms of the geometric parameters.

First, we demonstrate that our method gains precision over
DEEPG and thus enables us to achieve higher certification rates.
Second, we compare the average constraint generation time and
the average chunk certification time of our approach with DEEPG.
Third, we compare the time taken by our multiple-pixel approach
and DEEPG (by increasing the number of splits) to achieve the same
certification rate. Fourth, we analyse the precision-runtime tradeoff
for the Interpolative Decomposition approach. Finally, we also share
some observations about the performance of our method.

4.1 Experimental Setup

We evaluate on image recognition datasets: MNIST [4], Fashion-
MNIST [6] and CIFAR-10 [3]. For each dataset, we select 100
images from the test set to certify. The same 100 images are used
for DEEPG and our extended certification approaches. Among
these 100 images, we discard all images that are misclassified even
without any transformation. In all experiments for MNIST and
Fashion-MNIST we evaluate a 3-layer convolutional neural network
with 9 618 neurons, while for the more challenging CIFAR-10
dataset we consider a 4-layer convolutional network with 45 216
neurons. Details of these architectures are provided in Table 1. We
certify robustness to composition of transformations such as rotation,
translation, scaling, shearing and changes in brightness and contrast.
All experiments were run with multithreading on 4 CPUs.



Table 1: Architectures used in experimental evaluation.

MNIST FashionMNIST CIFAR-10

CONV 32 4×4 + 2 CONV 32 4×4 + 1 CONV 32 4×4 + 1
CONV 64 4×4 + 2 CONV 32 4×4 + 2 CONV 32 4×4 + 2

FC 200 CONV 64 4×4 + 2 CONV 64 4×4 + 2
FC 10 FC 150 FC 150

FC 10 FC 10

4.2 Precision gain over DEEPG
Table 2 reports certification rates of our approach compared with
DEEPG over the same number of splits of the transformation domain.
We observe significant gains in certification rate over DEEPG. The
certification rate for Rotation(30) on the MNIST dataset is higher
by 7.8%, while on the Sh(2), R(2), Sc(2), B(2, 0.001) experiment
is higher by 12%. This evidence that our method gains precision
in the input polyhedron by including linear constraints bounding
affine multiple pixel combinations. This also justifies that the affine
combinations of multiple pixels that we have chosen have lower
variability in terms of the transformation parameter and significantly
helps us shrink the input polyhedron. The performance improvement
from Fashion-MNIST is comparatively lower.

4.3 Constraint generation and chunk verification time
The bottleneck in terms of time for constraint generation is the
global optimization step. After the attacks are sampled, and linear
constraints are generated locally optimal to the set of attacks, the
bounds are optimised through a numerical approach. The pixels
and the affine expressions of multiple pixels that we consider, are
assumed to be Lipschitz continuous in terms of the transformation
parameters, i.e. have bounded gradients. Mean value theorem is used
to find the deviation of the locally optimal constraints in terms of the
globally optimal constraints. The affine multiple pixel expressions
exhibit lower variability in terms of the geometric parameters, and
hence have lower Lipschitz constants. This increases the time for
global optimisation because we need more splits for the Lipschitz
cone to intersect the locally optimal linear bounds.

The time-bottleneck for chunk verification for multiple-pixel
approaches is the linear program we use to reduce the linear bounds
of neurons, from in terms of the first layer neurons, to in terms of the
pixels and the transformation parameters. The first-layer neurons are
affine combination of the image pixels. However, we cannot obtain
linear bounds for the network neurons through affine combinations
of existing pixel bounds in a DeepPoly-like fashion because we
want to incorporate linear bounds over affine combinations of pixels.
Thus, we solve multiple large linear programs, one each for every
neuron, with the number of variables being equal to the sum of the
total number of image pixels and the transformation parameters. The
computational complexity of solving a linear program is exponential
in the number of variables. However, since each neuron depends on
only a small number of pixels, owing to the sparsity of convolutional
neural networks, we choose to exploit this fact in our next steps. The
linear program to solve the bounding constraints for each neuron
can be solved in terms of only the image pixels it depends on, and
hence the complexity can be reduced exponentially. This would be
our future steps.

4.4 Comparison of Neighbours and Decomposition ap-
proaches

The average constraint generation time is greater for decomposition
expressions than neighbourhood expressions because the decompo-
sition expressions, by definition, have near zero variability. Hence,
due to the low Lipschitz constant, the global optimization step is
time-consuming. The average chunk verification time is also higher
for decomposition constraints. This could be owing to the fact that

the Linear Program we need to solve to obtain the bounds for the
neurons is more complex.

The approach using decomposition expressions is however more
precise and gives higher certification rate as compared to neighbour-
hood expressions for the same number of domain splits.

4.5 Experiment time for fixed certification rate

Figure 1: Varying splits of DEEPG to match the performance of
DEEPG-ext

We observe that for datasets with images which have smaller
number of pixels, and smaller neural networks that we have used
for certification of MNIST images, our multiple pixel approach
outperforms DEEPG both in terms of certification rate and time. For
a fixed certification rate for the MNIST R(30) experiment, DEEPG
with increased splits takes longer time (239 min) to certify than our
multiple pixel approach with Decomposition expressions (171 min).
However, this property no longer holds for the datasets with colour
images certified by larger neural networks. The linear increase in
the number of pixels results in the computational complexity of
the linear program increasing exponentially. Thus, the increase
in the number of pixels is the primary bottleneck, and this can be
solved by breaking down the larger linear programs for obtaining
the constraints for the network neurons into smaller linear programs
over the relevant pixels.

We also observe that sometimes increasing the splits in the input
domain leads to a lower certification rate.

4.6 Trade-off between precision and runtime with Inter-
polative decomposition

In Figure 2, we observe a trade-off between the rank of the ap-
proximation considered for Interpolative decomposition (k) and the
runtime. Higher values of k increase the runtime but achieve higher
certification rates.

4.7 Observations
• Low certification rate for translation

The certification rate for images under the translation trans-
formation is surprisingly low. However, the certification rate
for splits is still competitive. The high certification rate for
splits could have been retained due to the fact that we have
split the domain too finely. The low image certification rate
for translation needs to be investigated. It is possible that the
bounding constraints are not precise enough for translation in
terms of the parameters. Here, the parameters are the pixels.



Table 2: Comparison of DEEPG-ext, Neighbours and Decompostion, which uses linear constraints for affine combination of multiple pixels with
DEEPG , which uses linear constraints for singular pixels. Here, Splits refers to the number of splits of the input domain and k refers to the rank of
Interpolative decomposition. R(φ ) corresponds to rotations with angles between ±φ ; T(x,y), to translations between ±x pixels horizontally and
between ±y pixels vertically; Sc(p), to scaling the image between ±p%; Sh(m), to shearing with a shearing factor between ±m%; and B(α,β ), to
changes in contrast between ±α% and brightness between ±β .

Accuracy (%) Attacked (%) Splits k Certified (%)

DEEPG Neighbours Deceomposition

MNIST

R(30) 99.1 0.0 10 40 86.7 92.86 96.94
T(2, 2) 99.1 1.0 11 20 77.0 78.0 79.0
Sc(5), R(5), B(5, 0.01) 99.3 0.0 2 10 32.0 64.0 70
Sh(2), R(2), Sc(2), B(2, 0.001) 99.2 0.0 1 5 72.0 81.0 84.0

Fashion-MNIST
Sc(20) 91.4 11.2 10 10 70.8 74.16 75.28
R(10), B(2, 0.01) 87.7 3.6 4 10 71.4 73.81 76.19
Sc(3), R(3), Sh(2) 87.2 3.5 2 10 57 59.3 62.79

Table 3: Comparison of DEEPG-ext, Neighbours and Decompostion, with the baseline DEEPG in terms of constraint generation time and chunk
verification time (in seconds)

Average constraint generation time
Experiment DEEPG Neighbours Deceomposition

MNIST R(30) 49.1 50.1 31.48
MNIST T(2,2) 493 198 883

MNIST Sh(2), R(2), Sc(2), B(2, 0.001) 85.0 429 108.7
Fashion-MNIST Sc(20) 39.61 44.3 26.1

Fashion-MNIST R(10), B(2, 0.01) 216.2 2386.9 9671

Avergae chunk certification time
Experiment DEEPG Neighbours Deceomposition

MNIST R(30) 5.3 23.4 20.4
MNIST T(2,2) 2.0 8.61 16.8

MNIST Sh(2), R(2), Sc(2), B(2, 0.001) 3.36 39 22.0
Fashion-MNIST Sc(20) 7.8 38.8 71.9

Fashion-MNIST R(10), B(2, 0.01) 3.85 419.87 75.18

We lose the smoothing effect of bilinear interpolation and the
variation of the pixels can be too abrupt in terms of the pixels.
The precision gained by multiple pixel constraints, still does
not improve the certification rate, however.

• Fall in certification rate for increasing splits for DEEPG
For some experiments, Translation(2,2), we observed a fall in
certification rate for increase in the number of splits. This is
unexpected and needs to be investigated.

• Low improvement in certification rate for the Fashion-
MNIST dataset We observe a lower improvement of our
approach in certification rate over DEEPG for the Fashion-
MNIST dataset.
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Figure 2: Varying parameter k of Interpolative decomposition


