
A Laplacian Framework for Option Discovery

in Reinforcement Learning

Marlos C. Machado, Marc G. Bellemare, Michael Bowling

Presented by: Ameet Deshpande (CS15B001)

Indian Institute of Technology Madras



Table of contents

1. Introduction

2. Proto-Value Functions

3. Option Discovery

1



Introduction



Motivation

• Proto-value functions (PVFs) provide good representations for states

in an MDP

• These PVFs can be used to implicitly define options by introducing

intrinsic reward functions called eigenpurposes [2]

• These reward functions are task independent and hence result in

useful options

• Two (out of the many) characteristics that are important for options

• They should operate at different time scales

• They can be easily sequenced

2



Proto-Value Functions



Brief Introduction

• PVFs are representations which capture the temporal (and

structural) aspects of an environment

• They are obtained by diagonalizing a diffusion model, which

captures the structure of the underlying graph in some sense

(assumption, MDP ≈ graph)

• Common definitions include, the combinatorial graph Laplacian

matrix, L = D − A and the normalized graph Laplacian,

L = D−
1
2 (D − A)D−

1
2 , where A is the adjacency matrix and D is a

diagonal matrix with Dii=rowsum(Ai )

• It is important to convince yourself that L indeed captures the

information that the graph provides

• Before getting into this work, let’s look into two other works on

Proto-Value Functions so that it is easier to appreciate this

framework [3] [4]

3



PVFs as basis

Recall the Bellman Optimality equation

V ∗(s) = max
a

∑
s′

Pa
ss′(R

a
ss′ + γV ∗(s ′))

• Value iteration and policy iteration represent the value functions

using an orthonormal euclidean basis

• That is, the representation for state s1 is [1, 0, . . . , 0] and for sn is

[0, 0, . . . , 1]

• This is however a useless basis for any representation learning

because the coefficient for each basis is the value function of that

state itself

V π = φe1v
π(s1) + · · ·+ φenv

π(sn)

4



PVFs as basis

However, PVFs provide a basis [V G
1 ,V

G
2 , . . . ,V

G
n ] such that any value

function on that MDP can be represented as a linear combination.

Plausible claim right? Any basis should do the trick.

V π = α1V
G
1 + · · ·+ αnV

G
n

And as promised before, the basis is task independent

5



How are they constructed?

Consider the transition probability matrix Pπ. If it can be diagonalized, it

can be written as

Pπ = ΦπΛπ(Φπ)T

Pπ =
n∑

i=1

λπi φ
π
i (φπi )T

The same Eigenvalues can be used for powers of Pπ

Since the basis span the space of all Rn vectors, the reward can be

written as

Rπ = Φπαπ

Using the above, the value function can be written as,

V π =
n∑

k=1

1

1− γλπk
φπkα

π
k

6



How are they constructed?

V π =
n∑

k=1

1

1− γλπk
φπkα

π
k

• But the idea was to make it independent of the rewards, so we

choose the basis functions which have a large value of 1
1−γλπ

k

• And this means we need to choose those Eigenvectors which have

high Eigenvalues

• Pick m < n number of functions for the best approximation, with

largest Eigen values (stochastic matrix properties)

7



How are they constructed?

• There is still a problem though, the Eigen values depend on the

transition probabilities, which are pretty hard to estimate. Why? It

is equivalent to finding a part of the underlying model

• We define the combinatorial Laplacian as L = D − A

8



What is the Laplacian?

• The Laplacian has many interesting properties. It is related to the

random walk operator, which is in turn related to the transition

probability matrix Pπ

• It is symmetric and positive semi-definite =⇒ Positive and real

Eigen Values

• It is also connected to spectral clustering

• Note that a function f refers to a mapping f : S → R and

L = D − A

• Lf (x) =
∑

y∼x(f (x)− f (y)), where y denotes vertices adjacent to x

9



What does the Laplacian do?

Lf (x) =
∑

y∼x(f (x)− f (y)), where y denotes vertices adjacent to x

Consider a chain graph, let’s see what the combinatorial Laplacian is

doing

Lf (vi ) = (f (vi )− f (vi−1)) + (f (vi )− f (vi+1))

= (f (vi )− f (vi−1)) + (f (vi )− f (vi+1))

= ∇f (vi , vi−1)−∇f (vi+1, vi )

= ∆f (vi )

10



What does the Laplacian do?

Solving the Laplace operator on a graph means finding the eigenvalues

and eigenfunctions of the following equation.

Lf = ∆f = λf

If the domain is 2-D, what are the functions which have ∂2f
∂x2 = λf ?

sin(x) and cos(x)

So far we have established the following

• Laplacian fills in for Transition probability matrix

• It is related to the Laplace Partial Differential equation (in fact, it is

the discrete form)

• Choose the smallest Eigenvalues to get the best approximation.

Why?

L = D−A

• PVFs are abstract Fourier basis functions that represent an

orthonormal basis set for approximating any value function. Why

orthonormal?

Symmetric Positive Semi-Definite!

11



What does the Laplacian do?

Solving the Laplace operator on a graph means finding the eigenvalues

and eigenfunctions of the following equation.

Lf = ∆f = λf

If the domain is 2-D, what are the functions which have ∂2f
∂x2 = λf ?

sin(x) and cos(x)

So far we have established the following

• Laplacian fills in for Transition probability matrix

• It is related to the Laplace Partial Differential equation (in fact, it is

the discrete form)

• Choose the smallest Eigenvalues to get the best approximation.

Why? L = D−A
• PVFs are abstract Fourier basis functions that represent an

orthonormal basis set for approximating any value function. Why

orthonormal?

Symmetric Positive Semi-Definite!

11



What does the Laplacian do?

Solving the Laplace operator on a graph means finding the eigenvalues

and eigenfunctions of the following equation.

Lf = ∆f = λf

If the domain is 2-D, what are the functions which have ∂2f
∂x2 = λf ?

sin(x) and cos(x)

So far we have established the following

• Laplacian fills in for Transition probability matrix

• It is related to the Laplace Partial Differential equation (in fact, it is

the discrete form)

• Choose the smallest Eigenvalues to get the best approximation.

Why? L = D−A
• PVFs are abstract Fourier basis functions that represent an

orthonormal basis set for approximating any value function. Why

orthonormal? Symmetric Positive Semi-Definite! 11



An Example

12



Approximating the value function

• What can we do with the PVF basis?

• Least-Squares Approximation can be used

Figure 1: Using just 10 basis functions

13



Approximating the value function

• What can we do with the PVF basis?

• Least-Squares Approximation can be used

Figure 1: Using just 10 basis functions

13



Option Discovery



Option Discovery through Laplacian

PVFs capture the large-scale geometry of the environment, such as

symmetries and bottlenecks. Why?

Symmetries because the Laplacian has spectral clustering properties

14



Option Discovery through Laplacian

PVFs capture the large-scale geometry of the environment, such as

symmetries and bottlenecks. Why?

Symmetries because the Laplacian has spectral clustering properties

14



Bottlenecks and more

A PVF can be interpreted as the desire to reach the highest or the lowest

point. My intuition is that, when the value function is written as

V π = α1V
G
1 + · · ·+ αnV

G
n

the points with the highest and lowest proto-value are where the change

will be the most. Hence, they probably represent something important.

15



Eigenpurpose

Define the following reward function, which represents a eigenpurpose

r ei (s, s ′) = eT (φ(s ′)− φ(s))

• This is a potential function. In the tabular case, the optimal option

will just be a policy to go to the highest or the lowest point

• An Eigenbehavior is a policy which is optimal with respect to the

eigenpurpose

• An action called terminate is augmented with the original set so that

the agent can terminate when it is not able to get any more positive

rewards

• They prove that for any option there is at least one state in which it

terminates. This can be seen intuitively (the highest point, for

example)

16



Learned Options

17



Learned Options

18



Learned Options

19



Learned Options

• Meaningful options like running down the corridor, going to the

corner of the room and going through doorways were learned

• Bottleneck options were discovered, but they were not the first ones

20



Evaluation

To make things a little more concrete, we have the following.

• How Eigenoptions present specific purposes?

• How Eigenoptions improve exploration?

• How Eigenoptions help agents accumulate rewards faster?

21



Exploration

Diffusion Time represents the expected number of steps required to

navigate between two randomly chosen states when following a random

walk.

This is easy to calculate for small gridworlds because we can choose a

random goal and run a uniformly random policy which encodes how

many steps it takes to reach the goal. Policy Evaluation.

22



Diffusion Time Comparison

Possible short-coming in their analysis? Very few options considered.

Dithering.

23



Diffusion Time Comparison

Possible short-coming in their analysis? Very few options considered.

Dithering. 23



Accumulating Rewards

64 options gave the best result for them. The larger the number of

options, harder it is to learn. 24



Approximate Option Discovery

In real-world problems, |S| might be so big that the same state may not

even be visited more than once. We need to resort to sample-based

approaches if we cannot construct the adjacency matrix. And we might

also want to use function approximation in such cases.

25



Sample-based Option Discovery

Sampling to construct the Adjacency Matrix does not extend well to

linear approximation

• Consider a matrix T, which is called the incidence matrix and is

initially empty

• Add the entry φ(s ′)− φ(s) to the matrix if it does not already exist

• Perform a SVD on T to get T = UΣV T and use the columns of V

as Eigenpurposes

• These are also the right Eigen vectors of the matrix T

26



Sample-based Option Discovery

Why does this work?

T = UΣV T

We can show that TTT = 2L. So the Right Eigen Vectors are the

Eigenvectors of the Laplacian

21 3

L =

 1 −1 0

−1 2 −1

0 −1 0

 , T =


1 −1 0

−1 1 0

0 1 −1

0 −1 1


27



Function Approximation

The method followed is the same

• Sample transitions and get s, s ′

• Use the set datastructure to avoid duplicates and store φ(s ′)− φ(s)

in T

• Perform a Singular Value Decomposition and use the right Eigen

Vectors

But now because we are using function approximation is being used, it no

longer makes sense to choose the smallest Eigen Values.

This can be understood by thinking of an adversarial state representation

which is a permutation of the tabular case.

28



Experiments in Atari

• The RAM State of the game was used as the state representation

• All the Eigen Vectors need to be evaluated, no other choice

• The next best option is chosen using

arg max
b∈A

∫
s′
p(s ′|s, b)r ei (s, s ′)

• This is essentially a one-step look-ahead. Is this a reasonable

assumption?

29



Learned Options

Even though the agent did not learn options to maximize the rewards,

the rewards received (28) is close to state-of-the-art

30



A few options were similar to the handcrafted ones in [1]

31



Conclusion



Summary

• Always read old papers carefully

• PVFs give representations which capture the geometry of the

environment

• The geometry is often directly related to what options are useful

• These options are expected to have good transfer properties

32



Questions?

32



References i

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum.

Hierarchical deep reinforcement learning: Integrating temporal

abstraction and intrinsic motivation.

In Advances in neural information processing systems, pages

3675–3683, 2016.

M. C. Machado, M. G. Bellemare, and M. Bowling.

A laplacian framework for option discovery in reinforcement

learning.

arXiv preprint arXiv:1703.00956, 2017.

S. Mahadevan.

Proto-value functions: Developmental reinforcement learning.

In Proceedings of the 22nd international conference on Machine

learning, pages 553–560. ACM, 2005.



References ii

S. Mahadevan and M. Maggioni.

Proto-value functions: A laplacian framework for learning

representation and control in markov decision processes.

Journal of Machine Learning Research, 8(Oct):2169–2231, 2007.


	Introduction
	Proto-Value Functions
	Option Discovery

