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Abstract

Numerical Weather Prediction (NWP) models are the current standard of the advances in weather
forecasting. Such physics-based models, however, are not free of errors due to the finite spatio-
temporal resolution and imperfect model formulations. We treat the post-processing of weather
forecasts as an image processing problem. We use conditional Generative Adversarial Networks
(cGANS) to post-process NWP precipitation forecasts, in an effort to reduce some of their system-
atic biases and thus, increase their performance as probabilistic forecasts (with respect to resolution
and realism). We evaluate the quality of the ensemble forecats produced by our model using Root
Mean Squared error (RMSE), Log Spectral Distance and wetness ratio. We find that our model
produces realistic forecasts and improves the quality of the generated images in terms of RMSE
but it tends to overestimate the amount of rainfall.



Chapter 1

Introduction

Weather forecasting is the application of the principles of physics in order to predict the future
state of the atmosphere for a given location and time. Due to the wide range of uses for weather
forecasts (e.g. in agriculture, aviation, etc.), people have tried to predict the weather for millenia
[3].

Modern weather forecasting is carried out using Numerical Weather Prediction (NWP), which
takes the current weather conditions (initial conditions) and processes them using physics-based
models (based on partial differential equations) of the atmosphere in order to determine future
states [2]. The output of a NWP system is the forecast for a discrete grid of points. For this
reason, the finite spatio-temporal resolution, as well as the model misspecification, make the NWP
forecasts prone to systematic biases. For instance, the NWP forecats often look blockish when
compared to the observation-based estimates combining radar and in-situ measurements, which
exhibit smaller-scale structures which often differ in location and intensity. Fortunately, there
has been some progress made towards correcting these biases using a variety of methods, ranging
from simple bias corrections to sophisticated methods based on deep learning. This task is called
post-processing and it aims to make any adjustments to the output of the NWP system in order
to alleviate or eliminate these inconsistencies for better future predictions [8].

Current NWP systems produce probabilistic forecasts instead of a single deterministic forecast in
order to obtain better predictions. A set of forecasts (an ensemble) is produced using the same
model and taking as input slightly different initial conditions and stochastic perturbations. The
ensemble forecats are produced in order to account for the errors introduced by the imperfect initial
conditions (which might come from measurement errors), as well as the errors introduced by the
imperfect model formulation. Ideally, the output of the post-processing method should verify well
when evaluated as a probabilistic weather forecast.

Forecast verification is the process of evaluating the quality of an ensemble forecast [1]. In particu-
lar, the NWP post-processing should "maximize sharpness subject to calibration". This means that
the model should make predictions with as high confidence as possible while still being accurate.

In this project, we perform post-processing of ensembles of precipitation forecasts for the area of
Switzerland, using real data produced (NWP forecats) and collected (observations) by MeteoSwiss.
We employ deep learning methods, namely generative adversarial networks (GANSs) in order to
post-process the NWP precipitation forecasts and produce ensemble forecasts that look physically
realistic and perform well as probabilistic forecasts.

The rest of the paper is organized as follows: Chapter 2 introduces the datasets used for this project,
Chapter 3 describes the evaluation measures, Chapter 4 details on the methods that were used,
including the neural network architectures, hyperparameters and other training details, Chapters
5 presents and discusses the main findings and Chapter 6 concludes with a summary of the main
achievements and results.



Chapter 2

Data

The post-processing of an ensemble forecast requires access to an ensemble of NWP forecasts,
paired with observed values. We use 2 datasets provided by MeteoSwiss for the interval May, 2016
- September, 2020, namely COSMO-E (forecast) and CombiPrecip (observations).

2.1 Observed Precipitation Data - CombiPrecip

Combiprecip is a derived observation dataset, combining radar measurements with in-situ rainfall
measurements from observation stations. While radar provides great spatial coverage and thus al-
lows to measure precipitation even away from observation stations, inferring precipitation intensity
from radar is somewhat unreliable in particular in complex topography. In particular, the radar
beam is shadowed by nearby mountains and lower-lying areas are shaded from aviewa. This shad-
owing can affect quantitative precipitation estimates, in particular when precipitation formation
happens close to the ground. To mitigate some of the disadvantages of radar-based precipita-
tion estimates, MeteoSwiss has developed CombiPrecip. Using all available rainfall measurements
in the domain, the radar images are calibrated to match station-based rainfall intensities. As
such, CombiPrecip represents the best observation-based estimate of the spatially comprehensive,
short-term rainfall evolution available to MeteoSwiss.

CombiPrecip is archived on Swiss coordinates (CH1903 / LV03'). Precipitation is expressed in
accumulated precipitation in mm over one hour, where the timestamp (always expressed as UTC)
represents the end-of-accumulation time. The data is recorded hourly from May, 2016 until Septem-
ber, 2020.

2.2 Numerical Weather Prediction (NWP) Data - COSMO-E

The Numerical Weather Prediction (NWP) data is made available in the dataset COSMOEZ2. The
COSMO-E NWP system is run on a rotated latitude-longitude lattice. The north pole is rotated
to -170E 43N (in standard latitude/longitude coordinates) in order to minimize distortion over
the region of interest (Switzerland). That is, the equator in the rotated coordinate system passes
through the domain of interest. The subregion of the COSMO-E domain archived for analysis is
shown in Figure 2.3.

COSMO-E provides NWP forecasts for a 2km x 2km grid over Switzerland, at a hourly temporal
resolution. The model is run twice a day (at 00:00 and 12:00), with different initial conditions,
offering forecasts for each hour for up to 5 days into the future. Each forecast is an ensemble made
of 21 members: a ’control run’, in which the NWP model is initialized with the actual observed

Lhttps://epsg.io/21781
2https://www.meteoswiss.admin.ch /home/measurement-and-forecasting-systems/warning-and-forecasting-
systems/cosmo-forecasting-system.html
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Figure 2.1: Example hourly precipitation estimate from CombiPrecip for 2016-06-09 at 10:00 UTC
(accumulated precipitation over previous hour)

initial conditions, and 20 other members which were initialized using small perturbations in the
initial conditions. As the datasets are very large, when training we use only the control run.

2.3 Grid Mismatch

The CombiPrecip and COSMO-E datasets use different coordinate reference systems. Therefore,
we need to reproject the COSMO-E coordinates to the Swiss coordinate system. An example of
a reprojection can be found in Figure 2.4. In addition, the observations are available for an area
that spreads outside of Switzerland. In order to select the same region from both datasets, after
reprojecting we use k-nearest neighbours in order to select the closest point from the CombiPrecip
grid for each point on the COSMO-E grid.

2.4 Training and test set split

In order to be able to measure the quality of the models, it is important to devise a proper
validation strategy. It is well-known that precipitation formation shows a strong seasonal and
diurnal cycle. Therefore, we cannot use a randomized train-test split in our data as this would
result in information leak. Instead, we split the data by year, using the last year for testing for
and the 3 years prior to it for training. When using this strategy, we make the assumption that
precipitation patterns do not change significantly from one year to another.

2.5 Caching data

We observe that converting the data to PyTorch tensors from large xarray matrices is a time
bottleneck. Hence, we cache the observation and forecast data relevant to us in the form of numpy
matrices beforehand. In the process of caching, we also filter out the samples which have missing
values.
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Figure 2.2: COSMO-E topography on rotated latitude-longitude
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Figure 2.3: Example hourly precipitation forecast from COSMOE for 2018-05-01 at 01:00 UTC,
forecast made at 00:00 UTC (accumulated precipitation over previous hour)
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Figure 2.4: The figure on the left is the reporojected COSMOE forecast. The figure on the right
is the CombiPrecip observation for the same time.
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Evaluation Measures

The objective of the project was to post-process numerical weather forecasts in order to correct
some of the systematic biases and increase their resolution, potentially by making the model predict
smaller-scale structures that are often present in the observed data. We evaluate quantitatively
the performance of our model by comparing our post-processed forecasts with the observed data
through the following verification measures: Root Mean Squared Error (RMSE), Log Spectral
Distance and Wetness ratio. The RMSE quantifies the accuracy of the generated forecasts while
the Log Spectral Distance and the wetness ratio determine whether the forecast is realistic.

3.1 Root Mean Squared Error

The Root Mean Squared Error between 2 grids of points is defined as:

1

RMSE =
MN

B2 (gi5 — 045)? (3.1)
where

M = extent of the coordinate system in the chx direction in Swiss coordinates

N = extent of the coordinate system in the chy direction in Swiss coordinates

gij is the generated post-processed forecast at coordinate (i, 5)

0;; is the observed precipitation at coordinate (i, 5)

RMSE is a measure of accuracy of the generated forecasts. We report the average RMSE over all
the datapoints in the testing dataset.

3.2 Log Spectral Distance

The realism of a forecast field can be assessed qualitatively using visual inspection. However, it
is useful to be able to evaluate the realism quantitatively as well, especially when comparing 2
precipitation fields or tracking the model’s progress over time. One important measure that helps
achieve this is the Log-Spectral Distance (LSD), which compares the power spectrum with of the
simulated fields with the power spectrum of the observations. The metric is defined as follows:

1 Pobs,i
LSD == \/NEi\Ll((lOlOglo Pgen’i )2) (32)

where N = the number of points in the dataset
Peps,i is the power spectrum of the observed precipitation
Pyen,i is the power spectrum of the generated post-processed forecast
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3.3 Wetness Ratio

When training the Generative Adversarial Networks, one of the challenges we faced was the fact
that the generated images systematically underestimated the amount of precipitation. This is
due to the fact that a large proportion of the images from the original dataset contained no
precipitation. For this reason, we attempted to balance the estimation of precipitation by removing
a fraction of samples from the dataset with low precipitation. However, it proves to be difficult to
determine a right threshold, which results in generated images with a precipitation ratio similar to
the one present in the observation dataset. We use the following measure to compare the amount
of precipitation from a generated forecast with the amount o precipitation from the observed
precipitation field:

No. of non-zero precipitation coordinates in the forecast

Wetness ratio = (3.3)

No. of non-zero precipitation coordinates in the observation

A wetness ratio close to 1 is ideal.



Chapter 4

Methods

In this chapter, we provide a description of the generative models that we use in approximating
CombiPrecip observations using COSMO-E forecasts. All models that we use are based on neural
networks. Specifically, these are generative adversarial networks in two variants. First, we use
generative adversarial networks (GANs) to generate realistic-looking forecasts without requiring
that the output is similar to a specific observation. Then, we extend this by using conditional
generative adversarial networks (¢cGANS) to generate forecasts for a specific date and time, using
the COSMO-E forecast as the input.

4.1 Generative Adversarial Network

In general, a generative adversarial network [4] is an adversarially trained neural network architec-
ture used for generative modeling, generating new examples based on real examples from a given
probability distribution. It consists of two functions, a generator G and a discriminator D. In our
model, G and D are parametrized as convolutional neural networks. The generator is trained to
output plausible examples as a function of the input, which is a uniformly distributed random
vector. This approximates drawing from a probability distribution, where the input noise ensures
a non-zero variance of the generated examples. Conversely, the discriminator is trained to distin-
guish between real examples and examples generated by the generator, outputting a confidence
score. In theory, by training the model in this way, the distribution of images generated by G
becomes indistinguishable from the real probability distribution as D and G improve. We will now
describe the details of our implementation.

In the next sections, we will use the following abbreviations to denote layers of a neural network:

e Conv2d(c, k, s,p) denotes a 2D convolution layer with ¢ channels, a kernel size of &, a stride
of s and p zero-padding pixels on the image boundaries.

e Deconv(c, k, s,p) denotes a 2D transposed convolution operator. The arguments are identical
to Conv2d(c, k, s,p).

e Tanh denotes the hyperbolic tangent function.
e o(.) denotes the sigmoid function.
e ReLU denotes a Rectified Linear Unit [10]. ReLU(z) = max(0, z).

e BatchNorm denotes a batch normalization layer [5].
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4.1.1 GAN architecture

In the unconditional case, the input to the generator is a random vector z € R, The gener-
ator outputs an image matrix y € R2°6#384 The input to the discriminator is an image matrix
x € R?%6¥384 with either o/ =y, or 2’ € Dops, the dataset of observations. The discriminator out-
puts a single scalar, y’ € [0, 1], indicating the confidence that 2’ came from the distribution of Dgps.

The generator is of the following form:

Deconv(1024, (4,6),1,0) — BatchNorm — ReLU
Deconv(512,4,2,1) — BatchNorm — ReLU
Deconv(256,4,2,1) — BatchNorm — ReLU
Deconv(128,4,2,1) — BatchNorm — ReLU
(

(

Deconv(64, 4,2,1) — BatchNorm — ReLU
[R2562384

L Ll bl

Deconv(1,4,2,1) — Tanh — y €

The discriminator takes the following form:

2’ — Conv2d(64,4,2,1) — ReLU
Conv2d(64,4,2,1) — ReLU
Conv2d(128,4,2,1) — BatchNorm — ReLU
Conv2d(256,4,2,1) — BatchNorm — ReLU
Conv2d(512,4,2,1) — BatchNorm — ReLU
Conv2d(1024,4,2,1) — BatchNorm — ReLU
Conv2d(1, (4,6),1,0) — o(.) = ¢ € [0,1]

L

4.1.2 cGAN architecture

Using GAN from the previous section, we are able to generate realistic-looking observation images.
However, we are not able to generate an observation based on a specific input image from the
forecast COSMO-E model. Thus, we have to modify the network to condition on this input image.
For this, we use a conditional generative adversarial network [9] which takes the forecast as its input.
Our implementation is based on the pix2pix paper [6], which proposed various optimizations to
the default cGAN architecture in order to perform image-to-image translation with high resolution
images.

In the conditional case, the input to the generator is a zero-padded forecast image from the
COSMO-E model z € R'?87192 The generator outputs an image matrix y € R?°673%4 The discrim-
inator is identical as in the unconditional case. It takes as input the image matrix z’ € R2562384
with either 2’ = y, or 2’ € Do, the dataset of observations, and outputs a single scalar, 3’ € [0, 1],
indicating the confidence that x’ came from the distribution of Dgps.

The generator is composed of a convolutional encoder, which compresses the forecast image = to
a latent vector representation z € R, followed by a deconvolutional decoder, which attempts to
recover the observation image conditioned on z.

Additionally, we use skip connections between encoder and decoder. A skip connection is used
to improve the flow of gradient by connecting layer d’ in the decoder with a previous layer in
the encoder e’, thus skipping the intermediate layers. Specifically, the output channels of e’
are appended to the input of e’. Skip connections are denoted by superscripts in the following
description of layers.
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Encoder

—

%

%
—
4)

Decoder

z —

1

Ll Ll

Conv2d® (64,4,2,1) — BatchNorm — ReLU
Conv2d*(64,4,2,1) — BatchNorm — ReLU
Conv2d®(128,4,2,1) — BatchNorm — ReLU
Conv2d?(128,4,2,1) — BatchNorm — ReLU
Conv2d'(1,1,1,0) — BatchNorm — ReLU
— ze R

Deconv (2048, (4,6),1,0) — BatchNorm — ReLU

(
Deconv(1024,4,2,1) — BatchNorm — ReLU
Deconv'(512,4,2,1) — BatchNorm — ReL.U
Deconv?(256,4,2,1) — BatchNorm — ReLU
Deconv®(128,4,2,1) — BatchNorm — ReLU
Deconv4(64, 4,2,1) — BatchNorm — ReLU
(

DeCOHV5 1 4’ 2’ 1) — Tanh — y € R256I384

4.1.3 Hyperparameters

In training, we use the Adam [7] optimizer with learning rate vp = 0.0002 for the discriminator,
and v = 0.0001 for the generator. We set 5, = 0.5 and 82 = 0.999. The model is trained for 100
epochs on the MeteoSwiss dataset with a batch size of 64.

As the loss function, we use Binary Cross Entropy Loss for both GAN and ¢cGAN. To enforce the
similarity of generated images with the ground truth in cGAN, this loss is summed with the L1
loss with A = 100 (see [6] for details).
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Results and Discussion

We will now evaluate the models proposed in Chapter 4. We will first use the previously discussed
evaluation measures to perform quantitative evaluation. Finally, we will perform visual (human)
evaluation of the quality of generated images.

5.1 Generating fake observations

We performed some experiments using unconditional GANs in order to generate realistic-looking
observations, similar to those present in the CombiPrecip dataset. As GANs are generally difficult
to evaluate, we relied extensively on human evaluation. The fake images generated by the GAN
look physically realistic but sometimes overestimate the amount of precipitation. This is due to
the fact that we had to remove a large proportion of the images from the original dataset (the
observations that contained no or very little precipitation) in order to obtain a stable GAN. Figure
5.1 and Figure 5.2 show samples of generated images and images from the original dataset. In
addition to human evaluation, we use the log-spectral distance to check whether the generated
images resemble the spatial structure of the original images. Despite looking physically realistic,
the generated images have a higher log-spectral distance than the original images, indicating that
there is some power loss at some frequencies. More hyperparameter tuning (and perhaps a more
powerful neural network architecture) is required in order to generate fields that look both realistic
for the human eye and match the power spectrum of the original images.

5.2 Post-processing of NWP forecasts

We compute the same metrics for both the COSMO-E forecasts and the post-processed forecasts
using the conditional GAN. A comparison between the 2 forecasts can be seen in Table 5.1.

Verification measures
Verification Measure Original Generated
Log-Spectral Distance 6.97 12.42
Root Mean Squared Error 0.117 0.113
Wetness Ratio 1.07 2.07

Table 5.1: Comparison of verification measures between the NWP forecasts and the post-processed
forecasts

Similar to the images produced by the unconditional GAN, the post-processed forecasts overesti-
mate the amount of precipitation (for the same reasons previously mentioned). A sample of NWP
forecasts, together with the observations and the post-processed forecasts can be seen in Figure
5.3. The slight improvement in the RMSE indicates that, even though the generated images over-
estimate the amount precipitation (the amount of non-zero pixels), the intensity of these is not

12



Chapter 5. Results and Discussion

13

0.50
100

0.2

0.06

Figure 5.1: Sample of generated images using the unconditional GAN
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Figure 5.2: Sample of observations from the training dataset
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Generated:

Forecast:

Figure 5.3: Sample of NWP forecast, together with the ground-truth (observation) and the post-
processed forecast generated by the GAN

significant and the post-processed images match better the intensity and location of the rainfall
present in the observations. Even though the generated fields look physically realistic, the increase
in log-spectral distance indicates that the generated images miss some power at certain frequencies.
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Conclusion

Generative models, and conditional Generative Adversarial Networks (GANs) in particular, prove
to be an effective method for post-processing of precipitation forecasts. The GANs are able to
generate realistic-looking precipitation forecasts, which look very similar to the true observations
and perform reasonably well when evaluated using verification measures such as log-spectral dis-
tance, root mean squared error and wetness ratio. Even though some of these metrics are worse for
the post-processed forecasts, the conditional GAN manages successfully to increase the resolution
of the original forecasts and match better the location and intensity of the rainfall present in the
observations.

This work could be extended by modifying the original pix2pix architecture so that the output of
the generator is randomized, for example using dropout!. This way, the generator could be used
to output any number of ensemble members by using a different random state. Alternatively, the
generator could be used to post-process each of the original ensemble members, resulting in an
ensemble of the same size. An interesting avenue for research would be comparing the performance
of the two methods. Additionally, further experiments can be conducted using other neural network
architectures and more hyperparameter tuning in the attempt to improve the performance of our
method.

Tt is harder to randomize cGAN compared to GAN, since the network learns to ignore random noise in input.

15
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