
Session 5:
CNNs Overloaded

Varun Sundar, 1st October 2018

Outline
Review:

1. Building blocks of a CNN

Today’s:

2. Backprop in CNNs

3. BatchNorm
4. CNN architectures
5. CNN in libraries

CNN Building Blocks

CNN vs MLP

● CNNs are MLPs with two constraints:
○ Local Connectivity

○ Parameter Sharing

Generic Overview

CNN Blocks

● Convolutional
● Activations
● Pooling
● Flattening
● Unpooling (recent)
● Deconvolution (more accurately transposed convolution)

CNN Blocks Overview

Convolution Layer

● Similar to signal
convolution

● Inspiration from
classical filtering,
ISP.

● Actually uses
correlation

Conv Layer: Variations - Padding

Conv Layer : Variations

 Conv Layer: Variations

Multiple Channels

● Consider at layer l, H*W*C
● Kernel D*D*C
● Output is (H - D + 1) * (W - D + 1)* 1
● Stack K such filters, (H - D + 1) * (W - D + 1)* K
● Why?

○ Transforms spatial correspondence into channel

○ Reduce no of params, K is your choice.

Pooling

Pooling Layer

1. Consider:
● W1*H1*D1 as input
● the spatial extent of filter F
● their stride S
● the amount of zero padding P (commonly P = 0).

2. Produces an output volume of size W2 X H2 X D2
where:W2=(W1−F+2P)/S+1, H2=(H1−F+2P)/S+1, D2=K

3. Introduces zero parameters since it computes a fixed function
of the input.

Backprop in CNNs

Notations

 - l is the lth layer where l = 1,2,...,L
 - w l is the weights connecting layer to layer l+1i,j
 - bl is the bias at layer l
 - x l is defined asi,j
 - where o l is the output vector at layer l after the

non-linearityi,j
 - f(.) is the non-linearity

BatchNorm

The need for normalisation

● Normalisation in general, even with correlated features
speeds up training

● training complicated by fact that the inputs to each layer
are affected by the parameters of all preceding layers

● small changes to the network parameters amplify as the
network becomes deeper.

● Called Internal Covariate Shift

Solutions

● Whiten the inputs (LeCun, 1998):
○ Costly to do for each input (to each layer)
○ Need to compute Covariance matrix

● Also, if normalisation computed outside gradient step,
model could blow up.

● Even with mini-batch, dont want to compute Cov matrix

Batch Norm algorithm

Credits: BN
paper, Sergey,
Szegedy.

Advantages of BN

 - Improves gradient flow through the network
 - Allows higher learning rates
 - Reduces the strong dependence on initialization
 - Acts as a form of regularization
 - Accelerates training

During Inference>>>

● Set beta and gamma from the last run (last
batch).

● Caveat: Donot use BN on batch size of 1,
with less data

● Can be stochastic, unstable.

Summary

CNN Architectures

 ConvNet architectures

LENET5
● Implemented in 1994 , one of the very first convolutional neural networks, and

what propelled the field of Deep Learning. This pioneering work by Yann LeCun
was named LeNet5 after many previous successful iterations since the year
1988.

LENET5

● use sequence of 3 layers: convolution, pooling,
non-linearity

● use convolution to extract spatial features
● non-linearity in the form of tanh or sigmoids (no ReLus back

then)
● multi-layer neural network (MLP) as final classifier

 AlexNET

● Brought DL back to mainstream in 2012, when Alex Krizhevsky released
AlexNet which was a deeper and much wider version of the LeNet and won by a
large margin the difficult ImageNet competition.

AlexNet

● use of rectified linear units (ReLU) as non-linearities
● use of dropout technique (Hinton et al.) to selectively ignore single neurons

during training, a way to avoid overfitting of the model
● overlapping max pooling, avoiding the averaging effects of average pooling
● use of GPUs (NVIDIA GTX 580) to reduce training time

The success of AlexNet started a small revolution. Convolutional neural network
were now the workhorse of Deep Learning, which became the new name for
“large neural networks that can now solve useful tasks”.

VGG
● first to use much smaller 3×3 filters in each layer
● insight that multiple 3×3 convolution can replace 5x5 and 7x7 convolutions

● Fewer params than Alexnet,
thrice as deep.

● VGG 16, 19.

Different VGG
Architectures

GoogLeNet and Inception

● Christian Szegedy and team
from Google,

● aimed at reducing the
computational burden of
deep neural networks,

● devised GoogLeNet in 2014
● Won Imagenet that year.

Inception Block
● Combination of 1×1, 3×3, and

5×5 convolutional filters
● Emulates Network in Network

(NiN)
● 1x1 Convolutions save params
● Called Bottleneck

GoogLeNet and Inception

Why multiple softmaxes?
● 22 layers, danger of the vanishing gradients problem during training
● Added multiple softmaxes at inception 4a, 4d
● These blocks may learn meaningful representations
● Discarded at inference

Inception V3 (and V2)
December 2015

● Batchnorm added (incep v2)
● maximize information flow into the network, by carefully constructing

networks that balance depth and width. Before each pooling, increase the
feature maps.

● when depth is increased, the number of features, or width of the layer is also
increased systematically

● use width increase at each layer to increase the combination of features.
● use only 3×3 convolution, when possible, given that filter of 5×5 and 7×7

can be decomposed with multiple 3×3

The Inception module shown
uses convolutions with
strides to decrease the size of
the data

Inception V3

Complete Inception_v3 architecture

ResNet
- December 2015 (around Inception v3)
- Simple ideas:

- Feed the output of two successive

convolutional layers

- Bypass the input to the next layers

ResNet architecture

Inception v4 or Inception_Resnet_v2

● Added residual connections.

SqueezeNet

SqueezeNet can be 3 times faster and 500 times smaller than Alexnet with same
accuracy.

● Using 1x1 filters to replace 3x3 filters.
● Using 1x1 filters as a bottleneck layer to reduce depth to reduce computation of

the following 3x3 filters.
● Downsample late to keep a big feature map.

The building brick of SqueezeNet is called fire module, which contains two layers: a
squeeze layer and an expand layer. A SqueezeNet stacks a bunch of fire modules and
a few pooling layers.

Fire Modules

The squeeze layer and expand layer keep the same feature map size, while the
former reduce the depth to a smaller number, the later increase it. The squeezing
(bottoleneck layer) and expansion behavior is common in neural architectures.
Another common pattern is increasing depth while reducing feature map size to
get high level abstract features.

Fire Modules

Mobilenets

 Core layers that MobileNet is built on which are depthwise separable filters (factorised filters).

 Depthwise separable convolution are made up of two layers: depthwise convolutions and
pointwise convolutions.

 Depthwise convolutions are used to apply a single filter per each input channel (input depth).
Pointwise convolution, a simple 1x1
 convolution, is then used to create a linear combination of the output of the depthwise layer.
MobileNets use both batchnorm and ReLU nonlinearities for both layers.

● Also uses width and resolution multipliers to save on computation

● Even more effective than Squeezenet

Depth wise convolutions

● form of factorized convolutions
● factorize a standard convolution into a depthwise convolution and a 1x1

convolution called a pointwise convolution

