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CNN Building Blocks



CNN vs MLP

● CNNs are MLPs with two constraints:
○ Local Connectivity

○ Parameter Sharing







Generic Overview



CNN Blocks

● Convolutional
● Activations
● Pooling
● Flattening
● Unpooling (recent)
● Deconvolution (more accurately transposed convolution)



CNN Blocks Overview



Convolution Layer

● Similar to signal 
convolution

● Inspiration from 
classical filtering, 
ISP.

● Actually uses 
correlation





Conv Layer:   Variations - Padding



Conv Layer : Variations

                                    Conv Layer:   Variations



Multiple Channels

● Consider at layer l, H*W*C 
● Kernel D*D*C
● Output is (H - D + 1) * (W - D + 1)* 1
● Stack K such filters, (H - D + 1) * (W - D + 1)* K
● Why?

○ Transforms spatial correspondence into channel

○ Reduce no of params, K is your choice.



Pooling





Pooling Layer

1. Consider:
● W1*H1*D1 as input
● the spatial extent of filter F
● their stride S
● the amount of zero padding P (commonly P = 0).

2. Produces an output volume of size W2 X H2 X D2 
where:W2=(W1−F+2P)/S+1, H2=(H1−F+2P)/S+1, D2=K

3. Introduces zero parameters since it computes a fixed function 
of the input.



















Backprop in CNNs



Notations

 -  l is the lth layer where l = 1,2,...,L
 -  w l is the weights connecting layer to layer l+1i,j
 -  bl is the bias at layer l
 -  x l is defined asi,j
 -  where o l is the output vector at layer l after the 

non-linearityi,j
 -  f(.) is the non-linearity























BatchNorm



The need for normalisation

● Normalisation in general, even with correlated features 
speeds up training

● training complicated by fact that the inputs to each layer 
are affected by the parameters of all preceding layers

● small changes to the network parameters amplify as the 
network becomes deeper.

● Called Internal Covariate Shift









Solutions

● Whiten the inputs (LeCun, 1998):
○ Costly to do for each input (to each layer)
○ Need to compute Covariance matrix

● Also, if normalisation computed outside gradient step, 
model could blow up.

● Even with mini-batch, dont want to compute Cov matrix







Batch Norm algorithm

Credits: BN 
paper, Sergey, 
Szegedy.



Advantages of BN

 -  Improves gradient flow through the network
 -  Allows higher learning rates
 -  Reduces the strong dependence on initialization
 -  Acts as a form of regularization
 -  Accelerates training



During Inference>>>

● Set beta and gamma from the last run (last 
batch).

● Caveat: Donot use BN on batch size of 1, 
with less data

● Can be stochastic, unstable.



Summary





















CNN Architectures



  ConvNet architectures



LENET5
● Implemented in 1994 , one of the very first convolutional neural networks, and 

what propelled the field of Deep Learning. This pioneering work by Yann LeCun 
was named LeNet5 after many previous successful iterations since the year 
1988.



LENET5

● use sequence of 3 layers: convolution, pooling, 
non-linearity

● use convolution to extract spatial features
● non-linearity in the form of tanh or sigmoids (no ReLus back 

then)
● multi-layer neural network (MLP) as final classifier



 AlexNET

● Brought DL back to mainstream in 2012, when Alex Krizhevsky released 
AlexNet which was a deeper and much wider version of the LeNet and won by a 
large margin the difficult ImageNet competition.



AlexNet

● use of rectified linear units (ReLU) as non-linearities
● use of dropout technique (Hinton et al. ) to selectively ignore single neurons 

during training, a way to avoid overfitting of the model
● overlapping max pooling, avoiding the averaging effects of average pooling
● use of GPUs ( NVIDIA GTX 580) to reduce training time

The success of AlexNet started a small revolution. Convolutional neural network 
were now the workhorse of Deep Learning, which became the new name for 
“large neural networks that can now solve useful tasks”.



VGG
●  first to use much smaller 3×3 filters in each layer 
● insight that multiple 3×3 convolution can replace 5x5 and 7x7 convolutions

● Fewer params than Alexnet, 
thrice as deep.

● VGG 16, 19.



Different VGG     
Architectures



GoogLeNet and Inception

● Christian Szegedy and team 
from Google, 

● aimed at reducing the 
computational burden of 
deep neural networks, 

● devised GoogLeNet in 2014
● Won Imagenet that year.



Inception Block
● Combination of 1×1, 3×3, and 

5×5 convolutional filters
● Emulates Network in Network 

(NiN)
● 1x1 Convolutions save params
● Called Bottleneck



GoogLeNet and Inception



Why multiple softmaxes?
● 22 layers, danger of the vanishing gradients problem during training 
● Added multiple softmaxes at inception 4a, 4d
● These blocks may learn meaningful representations
● Discarded at inference



Inception V3 ( and V2)
December 2015 

● Batchnorm added (incep v2)
● maximize information flow into the network, by carefully constructing 

networks that balance depth and width. Before each pooling, increase the 
feature maps.

● when depth is increased, the number of features, or width of the layer is also 
increased systematically

● use width increase at each layer to increase the combination of features.
● use only 3×3 convolution, when possible, given that filter of 5×5 and 7×7 

can be decomposed with multiple 3×3



The Inception module shown  
uses convolutions with  
strides to decrease the size of 
the data

Inception V3



Complete Inception_v3 architecture



ResNet
- December 2015 (around Inception v3)
- Simple ideas: 

- Feed the output of two successive 

convolutional layers

- Bypass the input to the next layers



ResNet architecture



Inception v4 or Inception_Resnet_v2

● Added residual connections.



SqueezeNet

SqueezeNet can be 3 times faster and 500 times smaller than Alexnet with same 
accuracy. 

● Using 1x1 filters to replace 3x3 filters.
● Using 1x1 filters as a bottleneck layer to reduce depth to reduce computation of 

the following 3x3 filters.
● Downsample late to keep a big feature map.

The building brick of SqueezeNet is called fire module, which contains two layers: a 
squeeze layer and an expand layer. A SqueezeNet stacks a bunch of fire modules and 
a few pooling layers.



Fire Modules

The squeeze layer and expand layer keep the same feature map size, while the 
former reduce the depth to a smaller number, the later increase it. The squeezing 
(bottoleneck layer) and expansion behavior is common in neural architectures. 
Another common pattern is increasing depth while reducing feature map size to 
get high level abstract features.



Fire Modules



Mobilenets

 Core layers that MobileNet is built on which are depthwise separable filters (factorised filters).
 
 Depthwise separable convolution are made up of two layers: depthwise convolutions and 
pointwise convolutions.
 
 Depthwise convolutions are used to apply a single filter per each input channel (input depth). 
Pointwise convolution, a simple 1x1
 convolution, is then used to create a linear combination of the output of the depthwise layer. 
MobileNets use both batchnorm and ReLU nonlinearities for both layers.
 
●   Also uses width and resolution multipliers to save on computation

 
●   Even more effective than Squeezenet



Depth wise convolutions

●  form of factorized convolutions 
● factorize a standard convolution into a depthwise convolution and a 1x1 

convolution called a pointwise convolution






