Session 5.
CNNs Overloaded

Varun Sundar, 1st October 2018




Outline

ok WS

Review:
Building blocks of a CNN
Today'’s:

Backprop in CNNs
BatchNorm

CNN architectures
CNN inlibraries




CNN Building Blocks




CNN vs MLP

e CNNs are MLPs with two constraints:

o Local Connectivity
o Parameter Sharing




CNN: Local connectivity (LC)
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MLNN ( 7 X 3 = 21 parameters)

Hidden layer (3 nodes)

Input layer (7 nodes)

MLNN-LC ( 3 X 3 = 9 parameters)
2.3X runtime and storage efficient.

In general for a level with m input and n output nodes and CNN-local connectivity of k nodes (k<m):

MLNN have
1.  m x n parameters to store.
2. O(mx n) runtime

MLNN-LC have:

k x n parameters to store.

O(k x n) runtime



CNN: Parameter sharing (PS)
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MLNN (21 parameters) MLNN-LC ( 3 X 3 = 9 parameters) MLNN-LC-PS (3 parameters)
2.3X runtime and storage efficient. 2.3X faster,
& 7X storage efficient.

In general for a level with m input and n output nodes and CNN-local connectivity of k nodes (k<m):

MLNN have MLNN-LC have: MLNN-LC-PS have:
1.  m x n parameters to store. 1.  k x n parameters to store. 1.  k parameters to store.
2.  O(m x n) runtime 2.  O(k x n) runtime 2. O(k x n) runtime



Generic Overview
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CNN Blocks

Convolutional

Activations

Pooling

Flattening

Unpooling (recent)

Deconvolution (more accurately transposed convolution)




CNN Blocks Overview
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Convolution Layer

e Similar to signal
convolution

e Inspiration from
classical filtering,
ISP.

e Actually uses
correlation
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onv Layer: Variations - Padding




Conv Layer : Variations

2. Stride (to produce smaller output volumes spatially.)

Without stride (i.e., [1,1]) With stride [2,2]



Multiple Channels

Consider at layer |, H*W*C
Kernel D*D*C
Outputis(H-D+1)*(W-D+1)*1
Stack K suchfilters,(H-D+1)*(W-D+ 1)*K
Why?

o Transforms spatial correspondence into channel

o Reduce no of params, K is your choice.
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CNN: Pooling layer
Single depth slice

Jl1]1]2]4
max pool with 2x2 filters
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1. Toreduce the spatial size of the representation to reduce the amount of parameters
and computation in the network.
2. Average pooling or L2 pooling can also be used, but not popular like max pooling.



Pooling Layer

1. Consider:
e W1*H1*D1 as input
e the spatial extent of filter F
e their stride S
e the amount of zero padding P (commonly P = 0).
2. Produces an output volume of size W2 X H2 X D2
where:W2=(W1-F+2P)/S+1, H2=(H1-F+2P)/S+1, D2=K
3. Introduces zero parameters since it computes a fixed function
of the input.




Different layers of CNN architecture
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Activation functions: Sigmoidal function
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Drawback 1: Sigmoids saturate and kill gradients (when the neuron’s activation saturates at

either tail of 0 or 1).
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Activation functions: tanh function
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Advantage: Eliminate Undesirable zig-zagging dynamics in the gradient updates for the
weights (because data coming into a neuron can be positive and negative.
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Drawback 1: But still saturate and Kkill gradients.



Activation functions: Rectified Linear Unit (very popular).
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Advantage 1: Eliminate saturation and killing of gradients for positive inputs.

Advantage 2: Greatly accelerate convergence of SGD. (Krizhevsky et al. argued that this is

due to its linear, non-saturating form.)

Advantage 3: tanh/sigmoid neurons involve expensive operations (exponentials, etc.),
whereas RelLU can be implemented by simply thresholding activations at zero.



Activation functions: Rectified Linear Unit (very popular).
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Drawback: RelLU units can irreversibly die during training. A large gradient flowing
through a ReLU neuron could cause the weights to update in such a way that the neuron

will never activate on any datapoint again.
0 = fails to update weights while back-prop.
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Activation functions: Leaky RelLU.

Instead of the function being zero when x < 0, a leaky ReLU will instead have a small
negative slope (a hyper-parameter).
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Advantages: Eliminate irreversible dying of neurons, as in ReLU.
Have all the advantages of RelLU.



Different layers of CNN architecture

42& E Z Thuck
i Siad | :

- VAN
-/\. D D — BICYCLE

1T TTTT]]

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING tumm co:mguo SOFTMAX ]

Y I
FEATURE LEARNING CLASSIFICATION



Flattening, fully connected (FC) layer and softmax

Class
probabilities F|attening

2z
3 1. Vectorization (converting M X N X D tensor to a
MND X 1 vector).

1. Multilayer perceptron.
2. Generally used in final layers to classify the object.
3. Role of a classifier.
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Softmax

Fully connected
: ' Softmax layer

1. Normalize output as discrete class probabilities.
I
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Backprop in CNNs




Notations

| is the Ith layer where | = 1,2,...,L

w | is the weights connecting layer to layer [+1i,]
bl is the bias at layer |

x | is defined asi,j

where o | is the output vector at layer | after the
non-linearityi,j

- f(.) is the non-linearity




Forward Propagation

- Mathematical representation
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Error / Loss

- tp - target labels
- apL - predicted labels

P
1 LN\2
E = ﬁZ(tp —(Zp)

p=1




Backpropagation

- Two updates are performed

For weights
For deltas

8, Wy

+

8y, wn}"




Backpropagation
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Backpropagation- Weight update

oF
= E E ()/’ /()I, z
()u _ J f=7
I
— [
= 10t 180¢ { E g 0 J’()/' i/ 1}

— I'()l‘lgq)" {()1,} E S 01._/




Delta update IF




Delta Update
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Delta update
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Derivatives of some common activation functions
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Backprop in Pooling Layer

- Max Pooling
- the error is just assigned to where it comes from

- Average Pooling
- The error is multiplied by 1/(NxN) and assigned to the whole pooling block




BatchNorm




The need for normalisation

e Normalisation in general, even with correlated features
speeds up training

e training complicated by fact that the inputs to each layer
are affected by the parameters of all preceding layers

e small changes to the network parameters amplify as the
network becomes deeper.

e (Called Internal Covariate Shift




Motivation

- Consider a deep neural network
F2
y = Fo(Fi1(z;01);02)
y' = Fi(z;61) i




Motivation

- Consider a deep neural network
- P(x) remains constant F
- P(y’) keeps changing since parameters 0, are

changing with each iteration

- Machine learning model assumes that data is sampled ( h2
from the same distribution each time

- For F, this assumption is violated F, m

ho




Motivation

'.

- It's desirable to have the output distribution of each
layer as zero mean and unit variance Gaussian

- Why not explicitly transform the output distribution of
each layer to a zero mean and unit variance Gaussian?
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Solutions

e Whiten the inputs (LeCun, 1998):
o Costly to do for each input (to each layer)
o Need to compute Covariance matrix
e Also, if normalisation computed outside gradient step,
model could blow up.
e Even with mini-batch, dont want to compute Cov matrix




Tractable solution - Batch normalization

- Consider a batch of activations x* at any layer and apply
~k J;k — E[l:"]
T =
v Var|zk]

- |s this differentiable?




Batch normalization (BN) layer

- Where to insert the Batch Normalization (BN) layer

FC

BN

tanh

FC

BN

tanh




Batch Norm algorithm

Input: Values of x overa mini-batch: B = {z, .}
Parameters to be leamed: ~, /3
Output: {lj, - BN.\.; (.’I‘l“)}

m

1 _
UB — — Z T // mini-batch mean
m ie1
l m
op = Z(""i — ug)? // mini-batch variance
=1
" Ti — JE .
Ti e // normalize
\ UZ’* + €
Y $— 4E; + 8 = BN, 4(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Credits: BN
paper, Sergey,
Szegedy.



Advantages of BN

Improves gradient flow through the network
Allows higher learning rates

Reduces the strong dependence on initialization
Acts as a form of regularization

Accelerates training




During Inference>>>

e Set beta and gamma from the last run (last
batch).

e Caveat: Donot use BN on batch size of 1,
with less data

e Can be stochastic, unstable.




Summary

Input: Values of x over a mini-batch: B = {1 _,,};
Parameters to be learned: ~, 3

Output: {y; = BN, z(z;)}

m

1 "
B - Z T; // mini-batch mean
i=1
I — - .
of — — Z(x,- — ug)? // mini-batch variance
Lo =1
o5 r; — :
& 4~ — Ee // normalize

Vo5 +€

Y; + YT; + B = BN, g(z;) // scale and shift




Dropout

- A type of regularization
- A method of ensemble learning applied to neural networks

- Impractical to train many neural networks
- Dropout makes it practical




Dropout

- In each forward pass randomly set some units to zero.




Why Dropout is a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear e
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is furry —%———— . cat
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look
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Dropout - another interpretation
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Dropout training

- At each step randomly sample a binary mask
- Probability of including a unit is a hyperparameter - typically 0.5

- Multiply the units by the binary mask

- Forward prop proceeds as usual




Dropout - test time

Output Input

(label) (lmage
- Dropout makes the output random Random
- Average out randomness Y= fW mask

y= f(&) = B,[f(z,2)] = / 53] s, 2

Integral is hard to compute



Dropout - test time

Approximate the integral Y =

Consider a single neuron
At test time, we have

During training, we have

At test time, multiply by
dropout probability

E.|f(z,2)

[ 1.2z

E [a} = w1 T + way

1 1
E|a] Zz(ww + way) + Z(wlx + 0y)

1
+ —(0z + 0y) +

1
1 Z(OT + woy)

zi(wlx + way)



Effects of using Dropout

(a) Without dropout (b) Dropout with p = 0.5.

Effects on a set of feature detectors taken from a convolutional neural network. While the features in (a) are mostly indistinguishable for humans, and
seem to contain a big portion of white noise, the features in (b) are the product of a training with dropout. As visible the detectors are able to filter
meaningful features such as spots, corners and strokes in an image. Image source: https://wiki.tum.de/display/lfdv/Dropout



Effects of using Dropout
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Comparison of test error with
and without dropout. Each color
represents a different network
architecture, ranging from 2 to 4
hidden layers (each fully
connected) and 1024 to 2048
units. Image source:
https://wiki.tum.de/display/Ifdv/Dr
opout




CNN Architectures




Top-1 accuracy [%)

ConvNet architectures

Inception-v4

80 -
Inception-v3 ‘ ResNet-152
55 JResNet=50 i VGG-16 VGG-19
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Operations [G-Ops]




LENETS5

Implemented in 1994, one of the very first convolutional neural networks, and
what propelled the field of Deep Learning. This pioneering work by Yann LeCun
was named LeNet5 after many previous successful iterations since the year

1988.

C3:f. maps 16@10x10
S4:f. maps 16@5x5

C1: feature maps
INPUT
32x32 6@28x28

l Full oonAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection




LENETS5

e use sequence of 3 layers: convolution, pooling,
non-linearity

e use convolution to extract spatial features

e non-linearity in the form of tanh or sigmoids (no ReLus back
then)

e multi-layer neural network (MLP) as final classifier




AlexNET

Brought DL back to mainstream in 2012, when Alex Krizhevsky released

AlexNet which was a deeper and much wider version of the LeNet and won by a
large margin the difficult ImageNet competition.

194 128 Max
128 Max
pooling




AlexNet

. use of rectified linear units (ReLU) as non-linearities

« use of dropout technique (Hinton et al.) to selectively ignore single neurons
during training, a way to avoid overfitting of the model

« overlapping max pooling, avoiding the averaging effects of average pooling

« use of GPUs (NVIDIA GTX 580) to reduce training time

The success of AlexNet started a small revolution. Convolutional neural network
were now the workhorse of Deep Learning, which became the new name for
“large neural networks that can now solve useful tasks”.




VGG

e first to use much smaller 3x3 filters in each layer
e insight that multiple 3x3 convolution can replace 5x5 and 7x7 convolutions

e Fewer params than Alexnet,
thrice as deep.
o VGG16,19.

TXTx512

28 x 28 x 512
. 7 ALaxX16 X012 1x1x4096 1x1 %1000

r?] convolution+ ReLLU

max pooling
fully connected+Rel.U

| softmax




Different VGG
Architectures

ConvNet Confi ghration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128
maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
convl-256 conv3-256 conv3-256
conv3-256
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512 conv3-512
conv3-512
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512 conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max
Table 2: Number of parameters (in millions).
Network ALA-LRN C D E
Number of parameters 133 133 134 138 144




GooglLeNet and Inception

e Christian Szegedy and team
from Google,

e aimed at reducing the
computational burden of
deep neural networks,

e devised GoogleNetin 2014

e Won Imagenet that year.
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Inception Block

Combination of 1x1, 3x3, and
5x5 convolutional filters
Emulates Network in Network
(NiN)

1x1 Convolutions save params
Called Bottleneck

Filter
concatenation

N i~

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

}

}

4

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer




GooglLeNet and Inception
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Why multiple softmaxes?

22 layers, danger of the vanishing gradients problem during training
Added multiple softmaxes at inception 4a, 4d

These blocks may learn meaningful representations

Discarded at inference

3a 3b a4 4b 4c 4d de Sa Sb @

! SoftMax
‘ w/Loss 2

CICTICICT  sontmax

w/Loss 1

Average 1 1
Pooling ~J v ) SoftMax
- Linear w/lLoss O



Inception V3 (and V2)

December 2015

« Batchnorm added (incep v2)

« maximize information flow into the network, by carefully constructing
networks that balance depth and width. Before each pooling, increase the
feature maps.

« whendepth isincreased, the number of features, or width of the layer is also
increased systematically

« usewidthincrease at each layer to increase the combination of features.

« useonly 3x3 convolution, when possible, given that filter of 5x5 and 7x7
can be decomposed with multiple 3x3




Inception V3

The Inception module shown
uses convolutions with
strides to decrease the size of
the data

Filter Concat

IS
stride 2
i
3%X3 3IX3
stride 1 stride 2
i i
Pool
! i stride 2

Base




Complete Inception_v3 architecture




ResNet

December 2015 (around Inception v3)

Simple ideas:

Feed the output of two successive
convolutional layers
Bypass the input to the next layers

weight layer

relu
\ 4

weight layer

X
identity
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Inception v4 or Inception_Resnet_v2

Relu activation

e Addedresidual connections. "

Relu activation

1x1 Conv
(256 Linear)

\
3x3 Conv
(32)
1x1 Conv T

(32)

3x3 Conv 3x3 Conv
(32) (32)
f f
1x1 Conv 1x1 Conv
(32) (32)




SqueezeNet

SqueezeNet can be 3 times faster and 500 times smaller than Alexnet with same
accuracy.

e Using 1x1 filters to replace 3x3 filters.

e Using 1x1 filters as a bottleneck layer to reduce depth to reduce computation of
the following 3x3 filters.

e Downsample late to keep a big feature map.

The building brick of SqueezeNet is called fire module, which contains two layers: a
squeeze layer and an expand layer. A SqueezeNet stacks a bunch of fire modules and
a few pooling layers.




Fire Modules

The squeeze layer and expand layer keep the same feature map size, while the
former reduce the depth to a smaller number, the later increase it. The squeezing
(bottoleneck layer) and expansion behavior is common in neural architectures.
Another common pattern is increasing depth while reducing feature map size to
get high level abstract features.




Fire Modules

quee’s

S
1x1 convolution filters

999

RelU I

Figure 1: Microarchitectural view: Organization of convolution filters in the Fire module. In this
example, s1,1 = 3, e1z1 = 4, and es,3 = 4. We illustrate the convolution filters but not the
activations.




Mobilenets

Core layers that MobileNet is built on which are depthwise separable filters (factorised filters).

Depthwise separable convolution are made up of two layers: depthwise convolutions and
pointwise convolutions.

Depthwise convolutions are used to apply a single filter per each input channel (input depth).
Pointwise convolution, a simple 1x1

convolution, is then used to create a linear combination of the output of the depthwise layer.
MobileNets use both batchnorm and ReLU nonlinearities for both layers.

e Alsouses width and resolution multipliers to save on computation

e Even more effective than Squeezenet




Depth wise convolutions

e form of factorized convolutions
e factorize astandard convolution into a depthwise convolution and a 1x1
convolution called a pointwise convolution
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(a) Standard Convolution Filters

I D o NF —

(b) Depthwise Convolutional Filters

N

- N —

(c) 1 x< 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution



Table 4. Depthwise Separable vs Full Convolution MobileNet

Model ImageNet Million Million
Accuracy Mult- Adds Parameters
Conv MobileNet 1179 4866 29.3
MobileNet 70.6% 569 4.2

Table S. Narrow vs Shallow MobileNet

Model ImagelNet Million Million
Accuracy Mult- Adds Parameters
0.75 MobileNet 68.4% 325 2.6
Shallow MobileNet 65.3% 307 2.9

Table 6. MobileNet Width Multiplier

Width Multiplier ImageNet Million Million
Accuracy Mult- Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
0.75 MobileNet-224 68.4% 325 2.6
0.5 MobileNet-224 63.7% 149 1-3
0.25 MobileNet-224 50.6% 41 0.5

Table 7. MobileNet Resolution

Resolution ImagelNet Million Million
Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
1.0 MobileNet-192 69.1% 418 4.2
1.0 MobileNet-160 67.2% 290 4.2

1.0 MobileNet-128 64.4% 186 4.2




