
Automatic Speech Recognition Framework for
Indian Languages

Shubhangi Ghosh

Indian Institute of Technology Madras

Abstract. In this project, we worked on developing several automatic
speech recognition models for Indian languages, namely Tamil, Telugu
and Gujarati using the Kaldi Speech Recognition Toolkit. A HMM-GMM
acoustic model in conjugation with a n-gram language model was initially
built for converting speech in the above mentioned languages to text.
To obtain improved Word Error Rates, a Time Delay Neural Network
(TDNN) was run. A Recurrent Neural Network based Language Model
(RNNLM) pipeline was then set up to improve the contextual informa-
tion compared to the n-gram language model. To achieve End-To-End
speech recognition, CTC (Connectionist Temporal Classification) was
used in conjugation with an Encoder-Decoder framework. A detailed
ananlysis of this framework was performed to obtain best results.

1 Introduction

Due to the large diversity of languages in India, an efficient and feasible im-
plementation of an Automatic Speech Recognition framework is an absolute
necessity. This would enable large scale collaboration between urban dwellers
and communal workers and make for a profitable work environment for all. We
have exploited conventional speech recognition methods such as the HMM-GMM
framework along with modern Deep Learning based frameworks to achieve the
same. A RNNLM pipeline was also set up to improve word (language model)
priors. Various modules from the Kaldi Speech Recognition Toolkit were used to
achieve the above. An ESPNET module was used to achieve End-To-End Speech
Recognition. A detailed analysis of this model was performed and the framework
was tuned to obtain best results.

2 Conventional HMM-GMM framework

2.1 Acoustic Model

The acoustic model uses a phone alignment framework offered by KALDI. Mel
Frequency Cepstral Coefficient (MFCC) based features are extracted for each
frame. Each frame is represented as a sequence of three states. A GMM-HMM
model is trained, optimized using Viterbi algorithm to maximize phone (thereby,
frame) alignment to output text.[1]

2 Shubhangi Ghosh

2.2 Language Model

N-gram language models are used. Unigram, Bigram and Trigram language mod-
els were experimented with in our case.

2.3 Feature Extraction

Feature representations are improved using feature space transforms like the
LDA and adding delta and delta-delta features (dynamic speech representation).

3 Time Delay Neural Network

Time Delay Neural Networks are used instead of BLSTMs are BLSTMs can get
bulky. TDNN is essentially a feed-forward neural network where the output is
fed explicitly at a delayed input time to make the network more lightweight.
Temporal convolution is used to obtain forward context. [2] BLSTMs usually
operate at a speed of 33 frames per second while TDNNs can process 100 frames
per second.
Fbank features are used as input. Posterior probabilities of phone to frame align-
ment obtained from n-gram models are used as targets by the TDNN.

4 Results

The following best results were obtained on running the above model on Telugu
data obtained from Microsoft Interspeech challenge.

The hyperparameter setting is described as follows:
4 hidden layers, 1024 neurons per hidden layer, Gradient Descent optimiser,
Initial Learning rate: 0.008, Loss function: Cross entropy

5 RNNLM

5.1 Data Collection and Cleaning

Data Collection

• Data was collected from Wikimedia XML dumps of text from all Wikipedia
pages existent in a given language. Here are the corresponding links for
Tamil, Telugu and Gujarati.

https://dumps.wikimedia.org/tawiki/latest/
https://dumps.wikimedia.org/tewiki/latest/
https://dumps.wikimedia.org/guwiki/latest/

Automatic Speech Recognition Framework for Indian Languages 3

• The dump was extracted using a Github module called Wikiextractor.

Data Cleaning

• Only words which were entirely in the native language were retained. This
was done by finding the maximum and minimum hexadecimal value of char-
acters in every given. The word was retained in the cleaned data only if both
the maximum and minimum value lie in the hexadecimal range of the given
language.

• Sentences were placed in separate lines by programmatically adding a new
line after every full stop. Between two files five dummy words were placed
to have context gaps.

5.2 Training

Training was done using the train script from Kaldi RNNLM module. The same
vocabulary set was used as used for training n-gram models as the final word lat-
tice obtained from n-gram model is used for re-scoring with RNNLM probability
values.

5.3 Decoding

RNNLM assumes infinite context for word-based language model. Hence it can-
not be used for directly generating a word lattice and decoding word probabil-
ities. Hence decoding is done by re-scoring the lattice obtained from a n-gram
language model.[4]

6 End-To-End Speech Recognition

6.1 Connectionist Temporal Classification

This is a character-based model for speech recognition. Every input frame is
mapped to a character belonging to the alphabet of the language or the null
symbol. Multiple consecutive frames may be mapped to the same character.
Thus output sequence lengths may be variable which is our main motive to
use CTC. However output length is upper-bounded by input length. Character
predictions take place using a Recurrent Neural Network (RNN). The objective
is to maximise the probability of the output given the input. A more detailed
description can be found here.

The CTC model assumes level-1 Markov assumption of conditional indepen-
dence. This means that the predicted character(from alphabet or null symbol)
for the next frame depends only on the predicted character for the current frame.

https://github.com/attardi/wikiextractor
https://distill.pub/2017/ctc/

4 Shubhangi Ghosh

6.2 Encoder-Decoder Model

The drawbacks of the CTC model that the Encoder-Decoder model tries to over-
come are as follows. It does not upper bound the output sequence length to the
input sequence length. Also, it does not make any conditional independence as-
sumption and assumes infinite context.

p(C|X) = ΠlP (cl|c1, ...cl−1, X)

Encoder

Fig. 1. BLSTM Encoder - LSTM Decoder

This model compensates too flexible alignment properties in the attention-based
method with CTC as a regularization during training and as a score correction
during decoding.
The encoder encodes the speech frames into state representation and subse-
quently produces an output at every time-step. There are two choices of encoder
in our model. One used a simple Bidirectional LSTM (BLSTM). The other uses
a Convolutional Neural Network (in our case, VGGNET) abstraction of the
speech frames and runs the BLSTM on those representations. This is denoted
as Encoder(X) = BLSTM(X) or BLSTM(V GGNET (X)).

Attention Mechanism
At certain time-steps, the output is dependent only on certain frames in the
input. Thus an attention mechanism is incorporated to assign appropriate atten-
tion weights to corresponding frames in the input. Attention weights range from

Automatic Speech Recognition Framework for Indian Languages 5

Fig. 2. BLSTM(CNN) Encoder - LSTM Decoder

0 to 1 and sum up to 1, and are computed as a function of the decoder state and
corresponding encoder outputs. We denote this function as Attention(ht, sl−1))

Decoder
At every decoder time step t, the attended encoder output, previous state and
previous time step’s decoder output is fed to the decoder unit. the Decoder is,
Decoder(X) = Softmax(Lin(BLSTM(.)). The Decoder output sequence can
only be of a fixed length.
The ESPNET toolkit was used to implement End-To-End speech recognition1.
More details about the implementation of End-to-End Speech Recognition can
be found here.[3]

ht = Encoder(X)

alt = Attention(ht, sl−1)

rl = Σtaltht

p(cl|c1, ...cl−1) = Decoder(rl, sl−1, cl−1)

how is it combining to words

6.3 Results:

Now, we present the Word Error Rates (WERs) of the above End-to-End Speech
Recognition Model on three languages. All results presented are %WERs.

1 I would like to acknowledge Anirudth N. for his extensively working with me to
figure out the end-to-end speech recognition pipeline.

6 Shubhangi Ghosh

Best Results:

Hyperparameter Settings for best results
The Hyperparameter settings that gave the best results for all three languages
is described as follows.

Batch size: 30
Epochs: 15

Encoder:
Encoder(X) = BLSTM(VGGNET(X))
No. of Layers: 8(Tamil), 4(Telugu, Gujarati)
Encoder Units: 320(Tamil), 160(Telugu, Gujarati)
Encoder Projection Length: 640

Decoder:
No. of Layers: 4
Decoder Units: 300

BLSTM vs. VGGBLSTM Encoder

We see an improvement in WER using VGGBLSTM as VGGNET obtains a
more meaningful feature abstraction than the standard fbank features.
Encoder Layers

We see that increasing number of Encoder layers results in an improved WER
only for Tamil. This is because Tamil has a significantly larger character set
than Telugu or Gujarati and using higher level abstractions makes more sense
for Tamil. For Telugu and Gujarati, the search space for optimization is increased
and we don’t end up achieving optimal results.
Encoder Units

REFERENCES 7

Increasing encoder units basically increases the context size for frames. Again
this results in an improved WER only for Tamil.
Encoder Projection Size

Increasing Encoder Projection size results in a WER improvement because it
allows for a more sparse representation of features.
Decoder Layers

Increasing number of layers in decoder results in a WER improvement because
it allows higher level abstraction in Decoder.

References

[1] Mark Gales, Steve Young, et al. “The application of hidden Markov models
in speech recognition”. In: Foundations and Trends R© in Signal Processing
1.3 (2008), pp. 195–304.

[2] Vijayaditya Peddinti et al. “Low latency acoustic modeling using temporal
convolution and LSTMs”. In: IEEE Signal Processing Letters 25.3 (2018),
pp. 373–377.

[3] Shinji Watanabe, Takaaki Hori, and John R Hershey. “Language indepen-
dent end-to-end architecture for joint language identification and speech
recognition”. In: Automatic Speech Recognition and Understanding Work-
shop (ASRU), 2017 IEEE. IEEE. 2017, pp. 265–271.

[4] Hainan Xu et al. “A Pruned RNNLM Lattice-Rescoring Algorithm for Au-
tomatic Speech Recognition”. In: (2018).

	Automatic Speech Recognition Framework for Indian Languages

