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Abstract—In this paper, a Meta-cognitive Recurrent Fuzzy
Inference System is proposed where recurrence is brought using
Memory type Neurons (McRFIS-MN) to retain the effect of all
past instances, while the meta-cognition component is employed
to control the learning process, by deciding what-to-learn, when-
to-learn and how-to-learn from the training data. The McRFIS-
MN model has five layers, and Memory Neurons (MN) are
employed only in the layers handling crisp values. The antecedent
parameters are set randomly while only the consequent weights
of the network are updated using a one-shot type projection
based learning algorithm through time (PBLT) which makes the
learning very fast. The performance evaluation of McRFIS-MN
has been carried out using benchmark problems in the areas of
nonlinear system identification and time-series forecasting. The
results are evaluated against some of the most popular neural
fuzzy methods and the obtained results indicate that McRFIS-
MN performs better in terms of speed while achieving better or
similar accuracy.

Index Terms—Meta-cognition, Neural Fuzzy Inference System,
Memory Neuron, Projection Based Learning through Time, Time
Series Forecasting, Dynamic System Identification

I. INTRODUCTION

Time series forecasting is a sub-field of predictive analytics
which involves developing models to fit historical data in
order to perform future predictions. Time series forecasting
has numerous useful applications such as energy requirement
prediction [1], weather forecasting [2] and financial indicator
prediction [3] etc. In a time series, past observations have
an inherent temporal ordering, which makes the problem of
forecasting more difficult.

Classical approaches such as Non-linear Auto-Regressive
Models (NARMA) [4] have been used to approximate relation-
ships between future states, past states, and exogenous inputs.
However, NARMA requires the general functional relationship
to be specified and thus is inadequate to capture arbitrary
functions mapping from past states to future. To overcome
this, Artificial Neural Networks (ANNSs) [5] were introduced.
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ANNS can learn any arbitrary mapping owing to the universal
approximation theorem [6]. Static feed-forward ANNs can’t
capture dynamic relationships between system outputs and in-
puts well, hence to model the dynamic relationship recurrence
was introduced in artificial neural networks. Recurrence can be
modeled in two broad ways - using the tapped delay approach
or using a feedback system. Tapped delay systems explicitly
feed in the past outputs as input at every time-step and thereby
assume the order of the system to be known and fixed. The
other way is to use feedback systems which can further be
classified into local recurrence systems and global recurrence
systems based on the type of feedback. In local recurrence [7],
there is self-feedback in neurons and a feedback is restricted to
a single layer. In global recurrence [8], delayed information
from one layer is fed to another layer. Memory neurons is
another popular way of bringing in recurrence, which falls
in the third class of both local and global type recurrence.
In Memory Neural Network (MNN) [9], a memory neuron
is associated with each network neuron whose scalar output
summarizes the history of past activation of that unit. Thus,
a memory neural network can model the dynamic trends of a
time series more effectively.

To model the uncertainty in practical time series, researchers
have resorted to fuzzy inference systems [10], for its human-
like linguistic behavior. The functional equivalence between
a Radial Basis Function Neural Network (RBFNN) and a
Gaussian Fuzzy Inference System (FIS), has been used to
determine the structure i.e. the number of fuzzy rules, the
initial positions (centers) of the rule membership functions
and other parameters of the FIS. Fixed structure FIS are not
usually feasible because a large number of hyper-parameters
including the number of rules have to be set heuristically and
the optimal structure may vary depending on the nature and
size of the data. Self-adaptive fuzzy inference systems [11]-
[13] start with zero rules and build up the required number of
rules as they run through the training data. Novelty of a sample
is determined based on the corresponding prediction error.
This approach doesn’t rely on availability of extra knowledge



about the input data unlike data-querying or active learning
approaches [14]. If an incoming sample is very novel, a new
fuzzy rule is added or else the existing rules are updated
based on the distance of the sample from the existing fuzzy
rule centers. The distance measure here is estimated using a
spherical potential formulation, which has been described in
detail in later sections. There are provisions for samples to be
deleted or kept in reserve as well as rule pruning. Type-II self-
adaptive fuzzy inference systems [15], [16] are more effective
in online feature selection and capturing temporal behaviour,
and thus can obtain greater accuracy with fewer rules. But
as Type-II FIS makes the neuron structure heaver, prediction
time is increased and hence Type-II FIS neurons have been
avoided. Time series forecasting problems can be handled both
by batch learning scheme or sequential learning scheme. In
batch learning, the complete training data is assumed to be
available before training commences, whereas in sequential
learning data instances arrive one-by-one and past samples are
not revisited. In batch learning , whenever new data arrives the
network has to be retrained all over again. Since in practical
applications, data usually arrives sequentially, batch learning
may sometimes be infeasible. The proposed model can be used
both in a batch or a sequential learning scenario. In a batch
learning scenario, multiple epochs are run over the training
data and the samples kept in reserve (after one epoch) are given
a chance to alter the network in the subsequent epochs (or
that epoch itself). In a sequential learning scenario, since the
complete training data is not available, each training instance
is visited only once. In this work, although the entire training
data was available beforehand for all the experiments (as is the
case for batch learning), we train our model in a sequential
manner by considering one sample at a time.

For updating the existing parameters, Projection-Based
Learning algorithm through Time (PBLT) has been used. It
is an one-shot learning algorithm which is fast, thus making
it well suited for any kind of learning scenario (both batch
and sequential). The conventional Backpropagation Through
Time (BPTT) [17] algorithm is fairly accurate when it comes
to handling dynamic systems, however, the convergence speed
is inherently slow due to infinitesimally small gradients near
the optima. Moreover, an improper choice of hyper-parameters
such as learning rate etc. may lead to problems of stability
and very slow convergence due to a large number of update
iterations. The Extended Kalman Filter (EKF) based learning
algorithm [18] converges in much fewer iterations than BPTT,
as it linearizes the state (output) transition relationship at each
time-step and gives an approximate estimate of the parameters
which minimize the squared error.To speed up the learning
process further, Projection-Based Learning algorithm through
Time (PBLT) [19] is used. PBLT considers the loss function to
be the sum of squared hinge loss and expresses it exclusively
as a function of the weights connecting to the output layer,
assuming all other dependencies of the loss to be constant
with respect to variations in input. This leads to the existence
of a closed form solution for minimization of the loss function.
Thus, the output weights can be estimated in one shot making

the learning process very fast.

In section II, problem definition and design aspects of the
MCcRFIS-MN model will be discussed followed by the meta-
cognitive learning process. In section III the performance eval-
uation, comparison of results and analysis will be presented
followed by the conclusion.

II. META-COGNITIVE RECURRENT FUZzY INFERENCE
SYSTEM (MCRFIS-MN)

In general, the problem of a time series forecasting can be
stated as to predict the 7 time steps ahead value y(k+7) based
on its past output values y(k) and exogenous inputs u(k)(i.e.
u(k) = [uy (k), uz(k), - ,up(k)]" € RT) as given below,

y(k+7) = h(y(k)v ’y(k_ny);u(k)"" 7u(k_nu)) (1)

where h(.) is an arbitrary nonlinear function representing the
system and n,,n, are the required number of lags for the
time series prediction. On the other hand, while treating a
nonlinear dynamic system identification problem, the aim is
to approximate closely the input-output functional relationship
of the dynamical system. The training data, [y(k),u(k)]” €
R (where P = P + 1) over time provides the necessary
information on inferring the dynamical relationship present in
the forecasting problem.

In this paper, memory neurons [9] are adopted into the
fuzzy-inference architecture of McFIS [12] to bring recurrence
in a cellular level while the meta-cognitive part of the fuzzy in-
ference system evolves and determines the optimum structure
(i.e. number of fuzzy rules).

Description of Memory Neuron (MN) [9] : Memory
neurons contain one regular neuron which accounts for the
static mapping of the corresponding inputs whereas it has one
memory output as well which represents the dynamic mapping
of the inputs as shown in the equations below. If the input to
the network neuron is d’ (k) € R, any p dimensional vector,
then the network neuron output (do(k)) and memory neuron
output (df5(k)) can be given by,

do(k) = f (d'(k)) )
doy (k) = ado(k) + (1 — a)dgy (k- 1) 3)

where f(.) can be any nonlinear function depending on the
layer the memory neuron is in and « is the memory neuron
parameter (0 < o < 1). It is apparent from 3 that the memory
output will retain the effect of all past instances (although
with exponentially decreasing values). These memory neurons
are then incorporated in the crisp layers of the proposed
neuro-fuzzy inference system to introduce recurrence at the
cellular(building block) level into the network.

Using McRFIS-MN the 7-time step ahead prediction prob-
lem gets reduced to determine the h in,

§(k+7) = h(y(k),u(k), w) 4)

where w represents McRFIS-MN’s weight parameters which
are to be determined during training. Note that, the input to
the McRFIS-MN is y(k) and u(k) and the output is § (k + 7).
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Figure 1: Network architecture of McRFIS-MN

Unlike other networks McRFIS-MN does not need the past
lags of y(k) and u(k) as separate inputs since MNs take care
of that.

A. Structure of McRFIS-MN

The architecture of the proposed evolving neuro-fuzzy in-
ference system with the memory neurons is shown in Figure 1.
It consists of a five-layer neuro-fuzzy network. Here, the first
layer is the input layer, the second layer is the fuzzification
layer, the third layer is the rule firing layer, the fourth layer is
the defuzzification layer and the last layer is the output layer.
MCcRFIS-MN incorporates memory neurons (represented by
solid circles in the figure 1) in input and defuzzification layers.
The input layer has P memory neurons. The fuzzification
layer and Gaussian rule layer has regular fuzzy neural nodes,
whereas the defuzzification layer has R memory neurons
corresponding to the R number of rules followed by the final
output layer.

Input Layer: The input layer has P input memory neurons
which receive the P input features u(k) and one lagged output
y(k), hence number of nodes is P = P + 1. The augmented
input vector is represented as v(k) = [y(k),u(k)]T. All of the
neurons in this layer are memory neurons. For the i*” memory
neuron in the input layer (layer designated by I’ ) the input is
v;(k) and the corresponding outputs can be defined as below,

xl(k):le(vl(k)) :Vi(k)ﬂ =12, ,P (5)
(k) = olai(k) + (1 — al)a™(k — 1) (6)

i i
where a! is the memory neuron parameter (0 < of < 1).

Fuzzification Layer: An initial arbitrary number of rules is
heuristically set. This arbitrary value is one of the tunable

hyperparameters. This number may be modified during the
training process in accordance with the rule addition or rule
pruning criteria. Each of the crisp outputs from the input
layer MNs, i.e. z;(k) and z}"(k), are transformed into fuzzy
variables using fuzzy membership functions. Here, Gaussian
membership functions are used to turn them into linguistic
variables. The 7" (where = 1,2,--- , R) membership value
for x;(k) is,

L[ (@ilk) = ) |
ri(k) = —_ | 7
¢ri(F) 63919[ 5 [ . (7
where ji,; and p™ are the centers of the r'" membership

functions for x; (k) and 27" (k) respectively and o, is the width.
So the membership value for 2™ (k) corresponding to r*" rule
is given by,

®)

; {(a:m) —umﬂ

ri(k) = exp [—
Or

Rule Firing Layer: The R regular neurons in this layer
do the rule aggregation of the fuzzy inference system using
a t-norm operation which is realized by multiplying all the
fuzzified input values (¢,;(k), #;;(k) where r = 1,2,--- | R

and ¢ = 1,2,--- , P) for each rules. So the firing strength
corresponding to the r*" rule is,

Fy(k) = T2, (6ra(R).072(R)) )

Defuzzification Layer : In the consequent part of the architec-
ture, defuzzification layer has R number of memory neurons.
So for the r*" memory neuron in this layer (layer designated
by 'R’ ) the input is [Fy(k), Fa(k), -, Fr(k)]T. Hence the
corresponding output variables can be defined using eqn. 10
and eqn. 11 as below,

(k) = fR(Fu(k), - Fr(k) = zRiEf)(k)

EI (k) = ol F, (k) + (1 — of) " (k — 1)

(10)

(1)

where oF is the memory neuron parameter ( 0 < aff < 1).
Output Layer: The final output node performs a weighted
summation of the outputs from the memory neurons in the
previous layer. The output from this layer is the 7 step ahead
prediction y(k + 7) is given as,

Gk +7) =SB w,. . F.(k) + 22 w™ F™ (k) (12)

The rule parameters (u and o), the memory neuron param-
eters (o) in the input layer and the defuzzification layer and
the output layer weights are all initialized to random values.

B. Meta-cognitive component of McRFIS-MN

The meta-cognition component of this network is a self-
regulatory mechanism which works without any outside inter-
vention to form an evolving optimized structure by deciding
what-to-learn, when-to-learn, how-to-learn etc. Hence when a
new sample arrives depending upon certain criteria one of the
aforementioned strategies is employed.



1) Sample Deletion: With each incoming sample the cor-
responding prediction value is computed from McRFIS-MN
followed by the prediction error, i.e. e(k) = y(k) — g(k)
(y(k),5(k) are the actual and predicted out for k" sample).
Now the strategy can be defined as below,

If le(k)| < E, then delete k' sample
Sample deletion strategy ensures that the network is not over-
fitted with training samples by not allowing McRFIS-MN to
learn from similar samples. With this criteria, meta-cognition
decides on what-to-learn.

2) Sample Learning: When the prediction error corre-
sponding to a sample is greater than the delete threshold (i.e.
le(k)| > E; ) that implies the particular sample is knowledge
rich and should be learned from. The learning can take place
in two ways, either by adding a new fuzzy rule to the existing
rule-base to accommodate a very novel sample or by updating
the existing consequent weights of the McRFIS-MN for a
knowledgeable but not so novel sample. This part of the meta-
cognition is responsible for the how-to-learn strategies.

Rule Addition: When the sample is significantly knowledge
rich then there might be a need for the addition of a new
fuzzy rule to accommodate the knowledge of this sample into
the network. While other algorithms in literature mostly use
error based criteria to measure the novelty of the sample,
MCcRFIS-MN uses spherical potential method [12] in addition
to determine if a new rule should be added to the existing
fuzzy rule base.

Spherical potential can be defined as the direct measure
of knowledge contained in a sample, expressed in terms of
squared distance mapping in the projected hyperdimensional
spherical space (as the Gaussian function is employed to
project the input features into the hyperdimensional space).
The corresponding spherical potential can be computed in
terms of the expression below,

W= 2SI 0P (6(R) G R))

Please note that a lower potential indicates higher novelty
and the vice versa and E is the potential threshold. On the
other hand, there is an adding threshold E, and the prediction
error has to be greater than this threshold to be considered
for a rule addition. Hence the Rule Addition criteria can be
written as,

If |e(k)| > E, and ¥ < Eg then add a new rule

when a new rule is added, then corresponding center and
width of the rule along with the forward path weights (to
the output node) need to be initialized as well. The Gaussian
parameters are set as follows,

(13)

H(R+1)i = Sﬁz(k‘)
NETIL?,+1)1' = zi"(k),

opt1 = min||z(k) — prll,

i=1,2,---,P
r=1,2--.R

(14)

With the new centers and spread Fryi(k + 1) can be

computed for the current sample. We assign Fg', | (k+1) with
the memory of the nearest existing rule (i.e, F)>). 1. g and

Fm . are also recomputed because the number of rules have
changed. The new memory neuron’s « is initialized randomly
like before. Once Fry1(k+1) and FJ',, (k+1) are computed
they are allocated two new weights wr11,wf, ;. These two
weights are initialized so as to drive the prediction error at
that instance to zero to fully exploit the localization property
of the gaussian membership function. For completeness of
the system of equations, the network neuron weight and the
memory neuron weight are initialized proportionately to the
corresponding weights of the nearest rule. The residue error
is estimated as,

e(k) =yk+71)— (ZE w,.F.(k) + 28

e w) F (k)
(15)
The weights corresponding to the new rule are now ini-

tialised as,

Wrt1 Fry1 (k) + wii Fiioq (k) = é(k)
WR+1 _ Wyt
Wiy wm.

(16)

Projection Based Learning through Time (PBLT) for weights
Update: When the instantaneous error is greater than the up-
date threshold Ej but is not novel enough for rule addition then
the knowledge of the sample is used to update the consequent
weights of McRFIS-MN using a one-shot projection based
learning through time (PBLT) [19].
If |e(k)| > E; then update the weights

A cost function is defined as the summation of squared error
for all the the training samples (i.e, S) and the goal is to
determine the weights w such that cost function is minimized.

1
J(w) = ST, (h) -

w* = argminJ(w)

The optimal w* is estimated such that the total energy reaches
its minimum. Making partial derivative of J(w) with respect
to w, equating it to zero and rearranging we can have the
following equation,

Aw = B (18)

here w is the weight vector consisting weights w,, w)* (i.e,
weR2#1) matrix A is consisted of elements a,.- (i.e,
AeR2E22Ry and B is consisted of b, such that BeR2F!
where,

e = D5 B (k). Fre (k)

s o . 19)
b =%7_F.(k)y(k), rr*=1,2,---,2R

where F' = [F; F™] is the augmented vector (F'eR2E%1) made
of all the normalized firing strengths (regular and memory
both) and y(k) is the actual output.

It is proved in [19] that second derivative of the cost function
with respect to the weight vector is positive hence solution of

Eqn. 20 is ensured to produce the optimal weight as,
w=A"1B (20)

Rule Pruning: A particular fuzzy rule will be considered
insignificant if for a certain number of consecutive samples



(say Np) the contribution of the rule 3, is lower than pruning
threshold E,. A spurious sample (outlier) can pose as a
novel knowledgeable sample and increase the number of rules.
To ensure that such rules are not present in the optimal
architecture rule pruning strategy is executed. Contribution of
a particular rule is calculated as below,

Br = Fr.(k).F™,.(k).|w,.w,".e(k)] (21)

By is the product of the rule consequents and the rule
weights, hence denotes the significance of the rule for the
current input instance. If 3, < E, for N, samples then the
r*" rule is pruned

3) Sample Reserve: When a sample meets the delete condi-
tion it is discarded but if a sample contains knowledge (doesn’t
meet delete criteria) but doesn’t also qualify any learning
criteria then that sample is deferred to the rear end of the
training and learned at a later stage. This strategy is termed
as sample reserve strategy and is employed to ensure that
a knowledgeable sample isn’t discarded because the network
didn’t consider it worthy at that point in time. This takes care
of the when-to-learn part of the metacognition.

III. EXPERIMENTAL RESULTS

In recent years, researchers have mostly concentrated on
deep neural structure whereas this work focuses on shallow
neural fuzzy inferences system to reduce prediction time
while obtaining competent prediction accuracy. Thus the per-
formance of McRFIS-MN is only compared with state-of-
the art shallow NFIS systems. In this section, McRFIS-MN
is employed in different types of problems to evaluate its
performance (in terms of speed and accuracy) against other
popular neural fuzzy inference system. In the first category,
performance comparison is carried out on a synthetic non-
linear dynamic system identification problem ( [11], [20],
[21]) followed by the second category where the performance
is presented for benchmark time-series forecasting problems
such as Mackey Glass [22], Box Jenkins problem [23] and
monthly sunspot number prediction problem [23].

For performance comparison, Root Mean Square Error
(RMSE) or Non-Destructive Error Index (NDEI) are used as
performance metrics according to the standard practice.

A. Benchmark Dynamical System Identification Problems

First, a nonlinear dynamical system identification problem
(SID) and its performance comparison results are presented.

Nonlinear System Identification I Problem: The SID I
problem is a popular one taken from [20], [21]. The one
step ahead output y(k + 1) depends on three past outputs
and two past inputs. Problem details can be found in [21]
the data generated for 900 time steps are used for training
the network. Among them, the first 350 samples use a iid
sequence uniform over [—2, 2] as input and the remaining time
steps use sin (Z—’g) as an input to the system. Using input-
output realization [20], [12], [24] the number of inputs to the

network are five, whereas in McRFIS-MN uses only two inputs

to predict y(k+1), i.e, u(k) and y(k) as memory neurons take
care of the required past instances.

After the training, the network is tested with the following
input signal,

k
sin(%) where 0 <k <250

+ 1.0 where 251 <k <500

(22)
—1.0 where 501 < k < 750

k k k
O.3sin(;—5) 10.01 sin(%) + 0.6sin(71T—0)

Actual
=== Estimated

o 200 400 600 800
Time steps

Figure 2: SIDI target vs actual plot with McRFIS-MN

1000

Figure 2 shows the actual output of the discrete time
dynamical system vs McRFIS-MNs predicted output. From the
figure, one can easily observe that the McRFIS-MN follows
the actual output very closely. The testing RMSE is 0.04. The
memory neurons in the input and defuzzification layer helps
MCcRFIS-MN to approximate the dynamics closely. McRFIS-
MN is about ten times faster than its predecessors while
maintaining comparable testing RMSE owing to its distinctive
projection based learning through time, which numerically
learns the optimal weights in one shot.

Table I: Performance comparison on SID-1 problem

Problem Network #Rules | Testing RMSE | CPU time(s)
eTS [25] 49 0.021 3
SimpleTS [26] 22 0.030 5
SID1 SAFIS [11] 17 0.022 4
MCcFIS [12] 10 0.030 7
McRFIS-MN 14 0.040 0.46

The performance of the McRFIS-MN is compared with
existing results of type-1 fuzzy neural networks. The number
of rules, testing RMSE are reported in Table I. From the table,
one can see that McRFIS-MN achieves better performance
than other state-of-the-art fuzzy neural networks primarily in
terms of speed, while maintaining comparable test RMSE.
Also, the number of rules in McRFIS-MN is smaller due to
its self-adaptive structure.

B. Benchmark Time Series Problems

Next, performance comparison is performed on three bench-
mark chaotic time series forecasting problems, viz., the



Mackey-Glass [22], Box-Jenkins gas furnace problem [23] and
monthly sunspot number prediction problem [27].

Mackey-Glass Time Series Prediction: The chaotic time
series data is produced from the differential equation given in
[22] as below,

dy 0.2y(k —7)

dk ~ 1+y(k—7) 0-1y(k)
The objective of the problem is to predict the 85 time steps
ahead future value y(k+85) based on past and current values,
y(k — 18),y(k — 12),y(k — 6), y(k). The parameters are set
as: 7 = 17 and y(0) = 1.2. 3500 samples were produced
out of which first 3000 were used for training and remaining
500 were used for testing the performance of McRFIS-MN.
During training, instead of using all 4 past values as inputs
only y(k) is used. Please note, here instead of 1 step delay, 6
steps delayed outputs are used as inputs.

The performance of the prediction is measured using the
non-destructive error index ( NDEI is the ratio of the Test
RMSE and the standard deviation of the test data; in this case,
which is 0.51). Figure 3 shows the target vs actual plot from
the McRFIS-MN netwok whereas table II provides the rule
numbers, CPU time(s)and test-NDEI. From this table it can be
observed that McRFIS-MN outperforms the other approaches
in terms of both accuracy and runtime, while using a similar
number of rules.

(23)
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Figure 3: MG target vs actual plot with McRFIS-MN.

Box-Jenkins Gas Furnace Problem: The prediction of
CO4 emission based on input gas flow rate in the Box-Jenkins
furnace can be cast as time series prediction problem. The
prediction problem can be represented as in [23]. Note, y(k)
is the C'O5 concentration and u(k) is the gas flow rate. Here,
the input to McRFIS-MN is both y(k) and u(k). Memory
neurons take care of the required lags. Based on the problem
guidelines, the first 200 samples are used for training and the
remaining 90 samples are used for testing. We see that the
runtime is ten times faster while also achieving better Test
RMSE.

Sunspot Time Series Prediction: Dark blotches on the
surface of the sun are referred to as sunspots, they were first
discovered in the 1700s after the invention of the telescope.
Sunspots account for many solar activities (i.e. change in
solar magnetism etc.) yet the proper causalities behind this

phenomenon are still not known and that’s why it has been
used as a popular benchmark time series problem for a long
time [23]. The monthly American sunspot data used in this
experiment, contains 778 samples for the range of 1944
December to 2009 October.! The first 699 samples are used
for learning while the remaining 79 samples are employed for
testing. The goal is to forecast an one month or single step
ahead value of the sunspot number using past two month’s
values. As can be seen in table II the Root Mean Square Error
(RMSE) is used as the performance measure.

Table II: Performance comparison on benchmark problems

Problem Network #Rules | Test NDEI CPU time(S)
eTS [25] 9 0.380 0.3
SAFIS [11] 6 0.376 0.5
MG SimpleTS [26] 11 0.394 0.4
MCcFIS [12] 10 0.100 0.9
MCcRFIS-MN 14 0.110 0.3
Test RMSE
eTS [25] 9 0.049 0.4
BJ SAFIS [11] 5 0.071 0.6
SimpleTS [26] 5 0.049 3
MCFIS [12] 12 0.036 0.2
McRFIS-MN 5 0.033 0.04
Test RMSE
eTS [25] 23 0.047 3.5
Sunspot SAFIS [11] 21 0.100 44
SimpleTS [26] 20 0.050 3.2
MCFIS [12] 12 0.060 4.2
McRFIS-MN 5 0.044 0.15

The performance of McRFIS-MN is compared with other
Type 1 neuro-fuzzy methods available in the literature and
presented in table II. From the table, it can be observed that
MCcRFIS-MN was able to attain better or similar accuracy
while taking very less time to be trained. Hence, it is ap-
parent that McRFIS-MN is faster in comparison with other
approaches used in the literature while maintaining its good
prediction accuracy.

CONCLUSION

In this paper, a recurrent type self-evolving neuro-fuzzy in-
ference system and its learning algorithm have been presented.
The use of MNs throughout the network at a cellular level
helps in capturing the input-output dynamical relationship
closely. The projection-based one-shot learning is very effec-
tive and fast. The performance is evaluated based on standard
system identification and benchmark time series problems.
After comparison with other neuro-fuzzy inference methods
such as SAFIS, eTS, SimpleTS, and McFIS etc. the results
clearly point to a better performance in terms of training
speed while achieving a competitive (if not better) accuracy.
The future direction of this work will be in the domain of
true online sequential learning and incorporating type 2 fuzzy
inference into McRFIS-MN for better handling of uncertainty
in real world time series problems.

Uhttps://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-
indices/sunspot-numbers/american/lists
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